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ABSTRACT: In this article, theoretical advances in the study of restricted diffusion in

NMR that have been achieved by using Laplacian eigenfunctions are described. The

macroscopic signal is represented as the characteristic function of a random phase shift

that a nucleus acquires during its motion in an inhomogeneous magnetic field. The

moments of this random variable are written in a matrix form that is based on Laplacian

eigenfunctions. This article focuses on the zeroth, first, and second moments which provide

the major contribution to the macroscopic signal. The asymptotic behavior of the macro-

scopic signal in both short-time and long-time regimes is considered when the diffusion

length is either much smaller or much larger than the size of a diffusion-confining domain,

respectively. Apparent diffusion coefficient, localization regime, inverse spectral problem,

and many other issues are discussed. � 2009 Wiley Periodicals, Inc. Concepts Magn Reson

Part A 34A: 264–296, 2009.
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I. INTRODUCTION

A magnetic field is a superb experimental tool for

encoding the motion of spin-bearing particles. When

the particles are restricted by a porous medium, their

motion is somehow altered that allows one to probe a

geometrical structure of the medium. This is a basis

for diffusion-weighted imaging (DWI) which found

numerous applications in material sciences, geophy-

sics, oil-recovery industry, biology and medical diag-

nostics, etc. DWI is successfully used for imaging

various media, from mineral samples (e.g., cement,

sandstones, clays, sedimentary rocks) to biological

organs and tissues (e.g., brain, bone, lungs). In spite

of outstanding experimental abilities provided by

modern NMR scanners, many fundamental theoreti-

cal questions still bother both theoreticians and

experimentalists. How does a geometrical restriction

deviate the macroscopic signal from the classical

Gaussian form which is known for unrestricted diffu-

sion? Why does the surface-to-volume ratio of a con-

fining medium appear in the short-time regime?

What is the motional narrowing and how does it
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change the signal at long times? What is an apparent

diffusion coefficient and how can one measure it cor-

rectly? When and why does the Gaussian phase

approximation fail to describe the macroscopic sig-

nal? Which theoretical models can replace it? What

is the role of surface relaxation and how can one

account for it? What are the limitations of the nar-

row-pulse approximation and is it possible to go

beyond this frame? What information on a porous

medium can be extracted from the macroscopic sig-

nal? How does the temporal profile (or gradient

waveform) of an applied magnetic field influence the

macroscopic signal? More generally, what is known

about restricted diffusion and its role for nuclear

magnetic resonance? A vast NMR literature is dedi-

cated to answer these questions [see review (1) and
references therein]. Here, a unified view on many of

these questions by using Laplacian eigenfunctions is

presented.

In Part 1, the focus was on Laplacian eigenfunc-

tions as a basis for an efficient numerical tool (2). A
deterministic description for the time evolution of a

macroscopic magnetization was employed. The mag-

netization obeys a Bloch-Torrey equation that

describes diffusion in a scalar field (a projection of

an applied magnetic field). Laplacian eigenfunctions

were used to reduce the Bloch-Torrey equation to a

set of linear first-order differential equations. Its solu-

tion was given in terms of two governing matrices, L
and B that represented the Laplace operator (matrix

L) and an applied magnetic field (matrix B). The

macroscopic signal was written in a compact matrix

form which is particularly suitable for numerical

computations.

Moving a step further, this article explains how

the matrices L and B can help to retrieve and extend

many theoretical results about restricted diffusion.

Here, a probabilistic description of microscopic dy-

namics of diffusing nuclei whose motion is modeled

by reflected Brownian motion is given. Although this

description is formally equivalent to the deterministic

one, it gives an alternative insight onto restricted dif-

fusion and turns out to be more appropriate for theo-

retical analysis. In a probabilistic framework, macro-

scopic quantities are represented as expectations of

some functionals over random trajectories of individ-

ual particles. These Brownian trajectories are charac-

terized by a diffusive propagator, whose eigenmode

expansion yields compact spectral representations of

macroscopic quantities.

In Section II, a reminder of basic facts about dif-

fusion and its probabilistic interpretation is given. In

Section III, multiple correlation functions are considered.

The formulas for the moments of a random phase

shift acquired by a nucleus, which diffuse in an inho-

mogeneous magnetic field are derived. This article

focuses on the zeroth, first, and second moments

which provide the major contribution to the macro-

scopic signal. Many classical results for both short-

time and long-time regimes when the diffusion

length is either much smaller or much larger than the

size of a diffusion-confining domain, respectively,

are retrieved and explained. Section IV is organized

in the form of answers to some general or practical

questions. The discussion concerns the meaning of

an analytical solution, problems in modeling porous

media, use and misuse of apparent diffusion coeffi-

cients, inverse spectral problem, etc. As in Part 1, the

discussion is held on an intuitive level with many

illustrations and examples. Further mathematical

details and numerous references, as well as a

historical overview, can be found in a review (1).

II. DIFFUSIVE MOTION

In this section, a reminder of basic facts about diffu-

sion is given. They are as follows: microscopic

dynamics and the central limit theorem; diffusive

propagator; microscopic interpretation of boundary

conditions; magnetic encoding and narrow-pulse

approximation; notion of Laplacian eigenfunctions

and eigenvalues; asymptotic regimes. An experi-

enced reader can skip this section which provides an

alternative and complementary presentation, from the

probabilistic point of view, of the notions that had

already been discussed in Section II of Part 1 (2).

Microscopic Dynamics

Since the first observation reported by the British

botanist Robert Brown (3), diffusion is acknowl-

edged as a fundamental transport mechanism. In

Brown’s experiment, pollens of Clarkia are sub-

merged in water in which they are permanently

‘‘bombarded’’ by water molecules. In a dilute suspen-

sion, the encounters between pollens are rare so that

their dynamics can be considered as mutually inde-

pendent. The number of the surrounding water mole-

cules is very large, while their individual actions on

the pollen are tiny and (almost) uncorrelated. As a

consequence, microscopic displacements of each pol-

len are not deterministic (as the motion of planets),

but random. The randomness emerges here as a lack

of information or a practical impossibility to survey a

huge number of individual water molecules. The ran-

domness means that a pollen, started at time 0 from a

point r0, can be found in whatever place in space at a

later time t (throughout the text, vectors and points in
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space are written in bold). Although the precise loca-

tion r of a given pollen at time t cannot be predicted,
it can be characterized by a probability density that

describes how likely it is for the pollen to be at r. As

probability can also be interpreted as the frequency

of occurence of some event (e.g., displacement of a

pollen from r0 to r), the probability density for a sin-

gle pollen is proportional to a macroscopic (physical)

density of many independent (noninteracting) pollens.

As each pollen follows its own microscopic dynamics,

its trajectory can be seen as an independent realization

of the underlying stochastic process.

After hitting a pollen, water molecules quickly

return to their thermal equilibrium and loose the

memory of their action. The corresponding decorrela-

tion time t is many orders of magnitude smaller than

a macroscopic observation time t. The displacements

ri of a pollen at the microscopic time scale t are

therefore (almost) independent random variables,

typically with zero mean and small finite variance

s2. The resulting macroscopic displacement Wt at

time t is the sum of a large number N ¼ t/t of small

displacements ri. Although the average displacement

is still zero, stochastic fluctuations around this value

are of the order of s
ffiffiffiffi
N

p
. In fact, the mean square dis-

placement at time t is

EfW2
t g ¼ E

XN
i¼1

ri

 !2
8<
:

9=
; ¼

XN
i;j¼1

Efrirjg;

where E denotes the expectation (or an average). If

any two displacements ri and rj are independent, then

Efrirjg ¼ EfrigEfrjg ¼ 0 since Efrig ¼ 0. The con-

tributions come from the terms with i ¼ j:

EfW2
t g ¼

XN
i¼1

Efr2i g ¼ Ns2:

The square root of the left-hand side of this equa-

tion characterizes fluctuations. Replacing N by t/t
yields the Einstein’s relation

EfW2
t g ¼ 2dDt; with D ¼ s2

2dt
; [1]

d being the dimension of space. The diffusion coeffi-

cient D, a macroscopic transport parameter, naturally

appears here as the ratio between two relevant char-

acteristics of the microscopic dynamics: s2 and t.
Diffusion turns out to be an effective description of a

complex microscopic dynamics at macroscopic time

scales.

The above elementary analysis can be substan-

tially refined. For this purpose, one can use the cen-

tral limit theorem that gives a precise probabilistic

description of fluctuations. The theorem states that

the macroscopic displacements of a pollen are dis-

tributed according to the normal (or Gaussian) law

(4). In mathematical terms, the probability that a pol-

len which started at time 0 from a point r0 arrives at

time t in a vicinity of a point r is described by the

following density:

Gtðr0; rÞ ¼ ð4pDtÞ�d=2
exp �ðr0 � rÞ2

4Dt

" #
: [2]

The Gaussian integral

Z1
�1

dx e�ax2 ¼
ffiffiffiffiffiffiffiffi
p=a

p
ða > 0Þ

allows one to check the correct normalization of the

probability density Gt(r0,r):Z
Rd

drGtðr0; rÞ ¼ 1;

where Rd denotes d-dimensional space.

In addition, one can use Eq. [2] to retrieve the

moments of Brownian motion Wt, for instance,

EfWtg ¼
Z
Rd

dr rGtð0; rÞ ¼ 0

EfW2
t g ¼

Z
Rd

dr r2 Gtð0; rÞ ¼ 2dDt; etc:

(assuming that Brownian motion started from the

origin).

The probability density Gt(r0,r) describing diffu-

sion between two points is often called a diffusive

propagator, a heat kernel or the Green function of a

diffusion equation. In deterministic dynamics, a natu-

ral question to ask is ‘‘Where does a particle arrive at

a given time?’’. This question has to be adapted to

the intrinsic uncertainty of Brownian dynamics, for

which it can be reformulated as follows ‘‘With which

probability does a particle arrive at a given location

at a given time?’’. The role of a propagator is pre-

sicely to answer this question.

Whatever the probability distribution of the inde-

pendent finite-variance microscopic displacements ri
is, the diffusion coefficient D remains the only rele-

vant information at a macroscopic level, while all

other details of the microscopic dynamics are aver-
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aged out. In other words, the Gaussian character of

macroscopic displacements appears without any spe-

cific knowledge of microscopic interactions. This is

one of the reasons why diffusion is so ubiquitous in

nature and sciences. It is worth stressing, however

that the uncorrelated character of interactions and the

finite variance of displacements are two important

conditions for using the central limit theorem.

Although these conditions can be weakened, if either

of them is not respected, it may result in anomalous

diffusions, for which Eqs. [1,2] do not hold [see (5–
9) and references therein].

In Part 1, a diffusion equation was established first

and Eq. [2] for a propagator was then obtained as its

solution. In this article, Eq. [2] is a direct conse-

quence of the central limit theorem, while it is easy

to check that Gt(r0,r) satisfies the diffusion equation

q
qt
Gtðr0; rÞ�DDGtðr0; rÞ ¼ 0; [3]

where D ¼ q2=qx21 þ � � � þ q2=qx2d is the Laplace op-

erator acting on r ¼ (x1, . . . xd). This equation

describes the time evolution of the probability den-

sity Gt(r0, r) from an initial condition with a point-

like source:

Gt¼0ðr0; rÞ ¼ dðr� r0Þ; [4]

d(r0�r) being the Dirac distribution. Although

Brownian trajectories are random, the probability

density Gt(r0, r) satisfies a deterministic equation. At

time t ¼ 0, a particle is localized at r0 so that

Gt¼0ðr0; rÞ ¼ 0 for all r = r0. In the course of time,

the particle explores further and further regions

around the starting point r0 that ‘‘spreads’’ the proba-

bility density. The ‘‘spreading’’ is characterized by

the diffusion length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfW2

t g=2d
p

¼
ffiffiffiffiffi
Dt

p
.

The propagator Gt(r0,r) is invariant under the per-

mutation of the starting and arrival points:

Gtðr0; rÞ ¼ Gtðr; r0Þ: [5]

This symmetry reflects the invariance of the statisti-

cal properties of Brownian trajectories under the time

reversal: the probability for coming from r0 to r is

equal to the probability for coming from r to r0.

A diffusive propagator, an ‘‘elementary brick’’ in

the description of translational dynamics, can be

used for an explicit construction of a solution to a

diffusion problem. For instance, if r(r0) is an initial

density of particles (conventionally normalized to

1), the density of particles at time t, c(r,t), is simply

a linear superposition of solutions with a fixed start-

ing point:

cðr;tÞ ¼
Z

dr0 rðr0Þ Gtðr0; rÞ:

In probabilistic terms, dr0 r(r0) is the probability

for choosing the starting point r0, while Gt(r0,r)

describes the diffusive motion from r0 to r.

The central limit theorem guarantees that any mi-

croscopic dynamics (with uncorrelated finite-var-

iance ‘‘elementary steps’’) could be described by a

diffusion equation at macroscopic time and length

scales. This statement allows one to substitute com-

plex microscopic dynamics by much simpler ones:

� a lattice random walk, that is a discrete Mar-

kov process (without memory) which consists

in successive independent random ‘‘jumps’’ of

a particle between adjacent sites of a graph

(e.g., neighboring sites of a square lattice)

(10–12);
� Brownian motion (or Wiener process) which is

a continuous stochastic process with independ-

ent Gaussian increments (4, 13); in this case, the
probability density [2] describes all the moves

of a particle, even at microscopic scales.

Although these two stochastic processes are dif-

ferent from each other, and from the microscopic dy-
namics of real atoms or molecules, they lead to the

same macroscopic description via diffusion equation.

This is the reason for using random walks and

Brownian motion for a theoretical analysis and a nu-

merical modeling of microscopic dynamics at macro-

scopic scales.

Boundary Condition

In most practical situations, particles are confined

in a reservoir that is called here a diffusion-confining

domain V. This is the case for water molecules in

cells and tissues, hydrocarbon molecules (oil) in sedi-

mentary rocks, oxygen molecules in the lungs, etc.

When the motion of particles is restricted inside a

domain V, microscopic interactions between particles

and a boundary should be taken into account. These are

usually short-range interactions that occur in a thin

surface layer near the boundary qV of the domain V.

Examples are widespead in physics, chemistry, and

biology, for instance:

1. magnetic impurities distributed on the inter-

face may destroy the transverse magnetization

of a nucleus near the boundary;

2. a chemical reaction on a catalytic surface

transforms one species to the others that
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modifies the concentration of the former

species;

3. a semipermeable interface allows for particles

to escape from a diffusion-confining domain,

etc.

If the contact with the boundary is short in com-

parison with macroscopic time scales, a precise

description of underlying physicochemical or biolog-

ical interactions becomes irrelevant. The surface

layer can therefore be treated as a ‘‘black box’’: after

a short time t, one of the two opposite events occurs

with a particle which arrived onto the boundary:

� with some sticking probability 1 � e, the par-

ticle changes its state (either by losing magnet-

ization on a magnetic impurity, or by absorp-

tion, transfer, or chemical transformation) and

does not participate in the transport process

anymore;

� or, with probability e, the particle is somehow

‘‘released’’ to the outside of the surface layer

(at some distance in the order of s); in other

words, the diffusive motion is resumed in a vi-

cinity of the hitting point and continued in the

bulk.

The specific nature of interactions determines the

values (or probability distributions) for the t and s.
The boundary parameters (adsorption, interaction or

waiting time t, and surface layer width s) are often

identified with, or confused with, the bulk parameters

from ‘‘Microscopic Dynamics’’ section (decorrelation

time t and the standard deviation s). Although such

identification is not rigorous, the smallness of these

microscopic characteristics in comparison with ob-

servation time and length scales may justify this kind

of approximation.

When a boundary is purely absorbing (no reflec-

tions, e ¼ 0), so that the concentration of particles on

this boundary is equal to 0. This is incorporated into

macroscopic description through a Dirichlet bound-

ary condition: Gt(r0, r) ¼ 0 when r [ qV. This condi-

tion can also be understood as zero probability for

arriving from a boundary point r to another point r0
(because of immediate absorption at r).

In the opposite limit of a purely reflecting bound-

ary (no absorptions, e ¼ 1), no particle can cross the

boundary so that the flux of particles across the

boundary is equal to 0. This is incorporated through

a Neumann boundary condition: qGt (r0, r)/qn ¼ 0

when r [ qV. Here q/qn is the normal derivative, act-

ing on r and pointing toward the exterior of a do-

main. The normal derivative is the projection of the

gradient operator ! onto the unit vector n(r) which

is orthogonal to the boundary at point r. For instance,

if the domain is a sphere, the normal derivative q/qn
coincides with the radial derivative q/qr.

For the intermediate case 0 , e , 1, absorptions

and reflections are chosen randomly with probabil-

ities 1 � e and e, respectively. Such a partially

absorbing or partially reflecting boundary is repre-

sented by a linear combination of Dirichlet and Neu-

mann boundary conditions:

D
q
qn

Gtðr0; rÞ þ K Gtðr0; rÞ ¼ 0 ðr 2 qOÞ: [6]

The above Robin (also known as Fourier, mixed,

relaxing, radiation, or third) boundary condition

should be satisfied for any starting point r0. The bal-

ance between reflections and absorptions in Eq. [6] is

controlled by macroscopic transport coefficients D
and K, the latter bearing different names: surface

relaxivity, permeability of a membrane, reactivity of

a catalyst, absorption rate for trapping processes, etc.

As the diffusion coefficient D represents a combina-

tion of microscopic bulk parameters according to Eq.

[1], the surface relaxivity K accounts for the micro-

scopic surface parameters (14):

K ¼ s
2dt

1� e
e

:

The transport coefficients D and K are in units of

square meter per second and meter per second,

respectively, their ratio D/K being homogeneous to a

length. This so-called unscreened perimeter length

plays an important role in diffusive transport phe-

nomena (15–22). The inverse of this length is nor-

malized by the size L of a diffusion-confining domain

for getting a dimensionless parameter

h ¼ KL

D
: [7]

The presence of a boundary condition substan-

tially modifies a solution of the diffusion equation

[3]. In particular, the propagator from Eq. [2] for the

whole space does not satisfy the boundary condition

[6] in any bounded domain. In other words, each con-

fining domain has its own diffusive propagator that

depends on the transport parameters D and K.

Reflected Brownian Motion. The presence of a

boundary drastically affects the mathematical con-

struction of Brownian motion. In a probabilistic

description, a Dirichlet boundary condition is easily
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implemented by introducing a stopping (or hitting)

time T (23). This is the first (random) moment when

Brownian motion which started inside a confining

domain encounters its boundary. As a particle having

encountered the boundary should be immediately

absorbed, it is sufficient to consider the diffusive pro-

cess for times t between 0 and T. In other words, we

simply close our eyes to what happens after the first

contact. A geometrical restriction is fully introduced

through the stopping time T, while Brownian motion

remains unchanged. This fact is crucial for many

computational aspects.

However Dirichlet boundary condition (or purely

absorbing surfaces) is rarely encountered in NMR. In

most experimental situations, magnetic impurities

which are distributed on the boundary have a finite

relaxation rate that corresponds to partially absorb-

ing/reflecting surfaces (Robin boundary condition).

In the special case of zero relaxation rate, one may

deal with purely reflecting surfaces (Neumann

boundary condition). In both cases, ordinary Brown-

ian motion is not appropriate. This is intuitively

clear: once a particle encounters a boundary, it is

‘‘forced’’ to remain inside the diffusion-confining do-

main, while ordinary Brownian motion is free to

leave the domain. We have therefore to modify the

local dynamics of the process in order to include

reflections on the boundary. In contrast to (ordinary)

Brownian motion, the construction of such a stochas-

tic process, known as ‘‘reflected Brownian motion,’’

strongly depends on the geometry of a confining me-

dium. For smooth boundaries, reflected Brownian

motion is defined as a solution of a stochastic differ-

ential equation known as the Skorokhod Equation

(13):

dXt ¼ dWt þ nðXtÞIqOðXtÞd‘t; [8]

where Wt is the (ordinary) Brownian motion, IqOðrÞ
is the indicator function of the boundary [IqOðrÞ ¼ 1

if r belongs to qV, and 0 otherwise], and ‘t is the

boundary local time, satisfying certain conditions

[see (13) for details]. The most unusual feature of the

above definition is that a single equation defines two

processes, Xt and ‘t, both strongly dependent on each

other. The intuitive meaning of the Skorokhod equa-

tion is simple. Inside a diffusion-confining domain,

an infinitesimal variation dXt of reflected Brownian

motion Xt is governed uniquely by the variation dWt

of the (ordinary) Brownian motion Wt because the

second term in Eq. [8] vanishes due to the indicator

function IqO. When a particle hits the boundary, the

presence of the second term does not allow the parti-

cle to leave the domain. In fact, this term leads to a

variation directed along the inward unit normal n(r)

toward the interior of the domain. At the same time,

each encounter with the boundary increases the

boundary local time ‘t. Reflected Brownian motion

can alternatively be introduced as a continuous limit

of reflected random walks on a regular lattice, which

are easier for intuitive interpretation (24, 25). The
Robin boundary condition (partial absorption/reflec-

tion) can also be implemented for reflected Brownian

motion by putting a special stopping condition (21,
22). A further discussion of these issues goes beyond

the scope of this article.

Independently of the way how reflected Brownian

motion is constructed, a diffusive propagator Gt(r0,r)

satisfying Eqs. [3,4,6] is the probability density for

(partially) reflected Brownian motion for moving

from r0 to r during time t inside a diffusion-confining
domain V with a partially absorbing/reflecting

boundary qV. In what follows, the propagator

Gt(r0,r) is used as an ‘‘elementary brick’’ in the

description of translational dynamics.

Magnetic Field Encoding

Experimental observation of translational dynamics

requires a kind of ‘‘marking’’ or ‘‘labeling’’ of travel-

ing particles for tracking their displacements in

space. In some cases, one can monitor individual dis-

placements of diffusing particles by using a colored

liquid, radioactive isotopes, fluorescent particles,

magnetic contrast agents, etc. Such single-particle

imaging techniques may however be difficult, expen-

sive, or undesired. For instance, if one is interested in

water activity in a cell, one needs to ‘‘label’’ all water

molecules according to their spatial positions in the

system (like runners in a stadium are numbered

according to their lanes). A magnetic field is a superb

experimental tool for encoding positions and whole

trajectories of spin-bearing particles (e.g., protons of

water molecules) (26, 27).

A Qualitative Picture. To get a qualitative picture

of a spin-echo magnetic field encoding, one can

imagine a river flowing between two parallel banks

along the x axis. The flow velocity u(y) is smaller

near the banks and larger in the middle (Fig. 1). At

time t ¼ 0, one releases a colored stain in the shape

of a vertical segment at x ¼ 0. Because the velocity

is different in various streamlines, the initial linear

segment is getting distorted as x(y) ¼ u(y)t. At time t
¼ T/2, the flow direction is instantly reversed, so that

the velocity profile becomes �u(y). The colored stain

completely recovers its original shape of a linear seg-

ment at time t ¼ T.
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This simplified picture does not account for diffu-

sion. Diffusion in the longitudinal direction (x axis)

would blur the recovered shape, independently of the

velocity. Diffusion in the transverse direction (y axis)

allows the particles to move from one streamline to the

other. This phenomenon, known as Taylor dispersion,

damages or fully destroys the original shape. The posi-

tion x(t) is no longer determined by the initial height y,
but by the whole Brownian trajectory y(t):

xðtÞ ¼
Z t

0

dt0uðyðt0Þ; t0Þ

so that x(t) is a random variable which depends on

the velocity profile (28).
The transverse dispersion mechanism in flow is

very similar to magnetic field encoding when the

nuclei diffuse between spatial regions with different

Larmor frequencies (angular velocities). In fact, a

908 radio frequency (rf) pulse turns the magnetization

of nuclei into the transverse plane which is perpen-

dicular to the orientation of the magnetic field (con-

veniently, the z axis) (29). In a constant magnetic

field B0 oriented along the z axis, the magnetization

precesses around the z axis with the Larmor fre-

quency gB0, g being the gyromagnetic ratio (a funda-

mental constant of a nucleus). Thinking of the trans-

verse plane xy as a complex plane, one can introduce

the complex-valued magnetization � ¼ �x � i�y, i
being the imaginary unit. If the absolute value of �
remains constant (no transverse relaxation), the magnet-

ization � is fully determined by the phase j ¼ gB0t
acquired up to time t: � / eij. Note that if the mag-

netization was defined as � ¼ �x þ i�y, the sign

minus would appear in front of the phase f:� / e�ij.

When the applied magnetic field is not constant,

the acquired phase can be obtained by integrating the

Larmor frequency gB(r,t) along the trajectory r(t) of
a nucleus up to the observation time T:

j ¼
ZT
0

dt gBðrðtÞ; tÞ; [9]

where a scalar field B(r,t) is the magnetic field applied

along the z axis (which is perpendicular to the transverse
plane xy). Taking a small time step t, one can think

of this integral as a sum of ‘‘elementary’’ phase shifts

t g B(rk, kt), acquired at successive positions rk ¼ r(kt)
of the nucleus along its trajectory r(t). For a chosen

magnetic field B(r,t), Eq. [9] defines a functional which
associates a (total) phase shift j to a Brownian trajec-

tory r(t). The phase shift j is therefore a random vari-

able. Its probability distribution can characterize the

translational dynamics of spin-bearing particles.

In contrast to single-particle imaging, pulsed-gra-

dient NMR techniques do not monitor individual tra-

jectories but intrinsically rely on statistical informa-

tion about the whole ensemble of spin-bearing par-

ticles. It is a challenge for a theoretician to develop

appropriate mathematical tools for interpreting this

information in the most efficient way.

Although the scalar field B(r,t) is introduced as a

magnetic field, its role as a weighting function of

reflected Brownian motion in Eq. [9] is much more

general and it goes far beyond NMR. In general, the

function B(r,t) can be thought of as a distribution of

‘‘markers’’ for distinguishing points and regions of a

diffusion-confining domain. When a particle diffuses,

the random variable j accumulates the correspond-

ing ‘‘marks’’ along the particle trajectory r(t). Each
point of the trajectory is thus weighted according to

B(r(t), t), which ‘‘encodes’’ the whole trajectory

through a single random number, the random vari-

able j. The function B(r,t) may represent various

encoding mechanisms besides a magnetic field. For

example, if the bulk contained absorbing sinks or

relaxing impurities, B(r,t) would represent the distri-

bution of absorption or relaxation rates. Here, j

Figure 1 Illustration for a recovery of the colored stain’s

original shape in a laminar flow. At time t ¼ 0, a colored

stain in the shape of a vertical segment is released in a

flow with a given velocity profile u(y). The original linear

profile is gradually distorted as the particles move with

different velocities depending on the height y of their

streamline. At time t ¼ T/2, the flow is reversed [the ve-

locity profile becomes �u(y)] that leads to a recovery of

the stain’s original shape at time t ¼ T.
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would be a cumulant absorption factor penalizing the

trajectories which pass through the sinks (30).

Probabilistic Description. The microscopic mag-

netization of individual nuclei form a macroscopic

signal E which can be measured in a diffusion-

weighted experiment:

E ¼ Efeijg; [10]

where an average over the ensemble of nuclei is

replaced by the expectation E over all Brownian

trajectories r(t) inside a diffusion-confining domain.

Here, we omit a proportionality factor between the

macroscopic signal (an experimentally measurable

current induced in a receiver by rotating magnetiza-

tion of nuclei) and the expectation in the right-hand

side of Eq. [10]. Although many diffusive NMR phe-

nomena are fully described by apparently simple and

intuitively clear equations [9, 10], the diversity and

complexity of these phenomena are caused by intri-

cate properties of reflected Brownian motion (13, 21).
Rigorously speaking, one should specify a kind of

Brownian trajectories to take into account in Eq.

[10]. For this purpose, the conditional expectation of

the transverse magnetization eij is introduced,

Mðr0; r;TÞdr ¼ Efeijjrð0Þ ¼ r0; rðTÞ ¼ rg; [11]

over all the trajectories of reflected Brownian motion

which started from r0 at time 0 and arrived to r at

time T. This quantity should not be confused with the

propagator Gt(r0,r) that can be written in a similar

form in which eij is replaced by 1. The ‘‘density’’

M(r0, r, T) is the contribution to the macroscopic sig-

nal from the nuclei started from r0 and arrived to r.

If r(r0) is the initial density of nuclei (normalized to

1), dr0r(r0) can be interpreted as a probability for

choosing the starting point r0. The magnetization at

time T is an average over all starting points:

mðr;TÞ ¼
Z
O

dr0rðr0ÞMðr0; r;TÞ: [12]

The macroscopic signal is determined by weight-

ing the contributions from the nuclei arrived to r, by

a sampling or pickup function ~rðrÞ of a receiver (coil
or antenna):

E ¼
Z
O

dr mðr;TÞ~rðrÞ: [13]

The function ~rðrÞ may account for nonuniform spa-

tial characteristics of a receiver, as well as for voxel

locations in diffusion-weighted imaging. In most

cases, ~rðrÞ is assumed to be a constant. Note that Eq.

[10] is a shorter form of Eqs. [11–13].

In a probabilistic language, the magnetization

�(r,T) and the macroscopic signal E are expectations

of a functional of the phase shift j in Eq. [9]. At the

same time, the magnetization �(r,T) was introduced
in Part 1 as a solution of the Bloch-Torrey equation

(31). Similarly, the conditional expectation M(r0, r,

T) turns out to be the Green function of the Bloch-

Torrey equation. Deep connections between Brownian

motion and second-order partial differential equations

have many important consequences and bring instruc-

tive and complementary insights onto restricted diffu-

sion. For instance, the integral representation [13] of

the characteristic function in Eq. [10] is known as

Feynman-Kac formula (13, 32–34). It provides a link

between the probabilistic and PDE descriptions used

here and in Part 1, respectively.

Narrow-Pulse Approximation. A probabilistic

description through Eqs. [9,10] is a general mathe-

matical basis for studying diffusion in a magnetic

field. In spite of a deceptive simplicity of Eqs. [9,10],

finding the macroscopic signal is a difficult task. An

NMR community is more used to a simpler descrip-

tion known as narrow-pulse approximation (NPA)

which was proposed by Tanner and Stejskal (35).
Although the general case for a given magnetic field

B(r,t) was mathematically untractable at that time,

the choice for using a particular magnetic field was

at experimentalist’s hands. Can one choose the spe-

cific magnetic field B(r,t) for which the problem

becomes solvable? Tanner and Stejskal proposed to

apply two short gradient pulses for encoding the

starting and arrival positions of spin-bearing particles

(Fig. 2). During a gradient pulse, the nuclei gain

phase shifts that depend on their positions. A phase

shift plays a role of a spatial label for each nucleus.

Since the particles move randomly, independently of

each other, and regardless of their spatial labels, the

initial spatially ordered arrangement of labels is grad-

ually destroyed in the course of time. At the observa-

tion time, the initial labels have to be compared with

the current positions of particles. For this purpose,

another gradient pulse of opposite polarity is applied

(this is analogous to inverting the flow direction in

our qualitative picture). None of the initial labels

exactly match the current ones. The difference

between initial and final positions of each particle,

being depended on its whole trajectory, is random.

On average, however, faster diffusion is expected to

yield larger differences. The probability distribution

of the phase shifts can thus characterize the transla-

tional dynamics of spin-bearing particles.

In mathematical terms, a phase shift due to

Tanner-Stejskal short gradient pulses is
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j ¼
Zd
0

dt gBðrðtÞÞ �
ZT

T�d

dt gBðrðtÞÞ

’ gd½Bðrð0ÞÞ � BðrðTÞÞ�: [14]

Since the motion of particles between times d and

T � d is not affected by a magnetic field, the transla-

tional dynamics is described by a diffusive propaga-

tor Gt(r0,r):

Mðr0; r;TÞ ’ eigd½Bðr0Þ�BðrÞ�GTðr0; rÞ;
and the macroscopic spin-echo signal at time T is

where the sampling function ~rðrÞ was assumed to be

constant. A probabilistic reading of this formula is

explicit (Fig. 2). In fact, one first chooses randomly a

particle at point r0 (with probability r(r0)dr0) and enco-

des its position by the first gradient pulse (the first expo-

nential). Up to time T, the particle diffuses to a random

point r with probability Gt(r0,r)dr, where it gets another
phase shift due to the second gradient pulse represented

by the second exponential. The macroscopic signal at

time T is formed by the whole ensemble of particles so

that all possible starting positions r0 and arrival posi-

tions r have to be averaged (the two integrals).

In most cases of practical interest, an inhomoge-

neous magnetic field B(r) is generated with a linear

gradient g in a given spatial direction e, B(r) ¼ g(e �
r). Assuming a uniform initial density, r(r) ¼ 1/V,
and denoting k ¼ ggde, one gets

E ¼ 1

V

Z
O

dr0

Z
O

drGTðr0; rÞeikðr0�rÞ; [15]

where V is the volume of a diffusion-confining do-

main V. The macroscopic signal as a function of k

appears as a kind of Fourier transform of the propa-

Figure 2 Encoding the positions of spin-bearing particles by two short-time gradient pulses. A

908 rf pulse flips all spins into the transverse plane, in which they rotate in phase, independently

of their positions between two parallel plates (shown as thick vertical segments). During the first

gradient pulse, B(x) ¼ gx, each spin gains a phase shift ggxd depending on its position x along

the direction of the applied gradient. This phase shift plays a role of a spatial label for the spin.

For an acquisition, another gradient pulse of opposite direction, B(x) ¼ �gx, is applied before

observation time T. If spins were immobile (on the left), the net dephasing would be zero for all

of them. In other words, the rephasing by the second gradient pulse would be complete, allowing

to form an echo (macroscopic signal). On the right, the spin-bearing particles diffuse that is

schematically represented by broken lines. Since the arrival positions do not match the initial

positions (encoded spatial labels), the rephasing is not complete. An echo still appears, but its

amplitude is attenuated. The probability distribution of phase shifts can thus characterize the dy-

namics of spin-bearing particles through the spin-echo attenuation.
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gator Gt(r0,r). In fact, if the diffusive propagator

Gt(r0,r) is formally extended to the whole space Rd

by putting Gt(r0,r) ¼ 0 whenever r0 or r is outside of

the confining domain V, the above integrals can be

written as

E ¼ 1

V

Z
Rd

dr e�ik:r

Z
Rd

dr0 GTðr0; r0 þ rÞ

2
64

3
75:

In experiment, the direction and amplitude of the

vector k are varied to assess the averaged propagator

(the term in the large brackets) for a studied confin-

ing domain (36).
The formula [15] for short gradient pulses is a

keystone for many experimental and theoretical stud-

ies [see reviews (1, 37–39) and references therein].

This is a broadly accepted way of thinking about re-

stricted diffusion in NMR. If this relation was always

applicable, further discussions in this article would

not be necessary. However, the description by short

gradient pulses is approximate. The implicit hypothe-

sis is that the gradient pulses are so narrow in time

that diffusion of particles during these pulses (time d)
can be neglected. This hypothesis may or may not be
satisfied. In practice, this so-called narrow-pulse

approximation is often applicable for liquids and

sometimes for gases. As a counter example, DWI of

the lungs with hyperpolarized helium-3 gas, which is

usually performed with gradients of intensity g � 1

mT m�1 and duration d � 1 ms (40–42) is consid-

ered. For the diffusion coefficient D of helium around

1 cm2s�1, the phase shift uncertainty ggd
ffiffiffiffiffiffiffiffiffi
2Dd

p
is in

the order of 0.1 (with g ’ 2� 108 rad T�1s�1 for he-

lium-3 nuclei). Under these conditions, the narrow-

pulse approximation is not applicable.

A number of theoretical, numerical and experi-

mental studies concerned the applicability of the

narrow-pulse approximation (43–47). The revision of

the related literature does not respond to the aims of

this article. Whether this approximation is applicable

or not, the concept of using two very short gradient

pulses remains restrictive from another point of view.

In the narrow-pulse approximation, one encodes only

the starting and arrival points, throwing away the full

trajectory of a particle. In contrast, the application of

an inhomogeneous magnetic field continuously, dur-

ing the whole experiment, allows one to encode the

full trajectory, providing a priori richer information

about restricted diffusion. Moreover, one has a free-

dom to vary the intensity of the magnetic field in time.

Figuratively speaking, the difference between the nar-

row-pulse approximation and a continuous encoding

is similar to that between taking two snapshots and

filming a whole movie. The fact that the analysis of

continuously encoded trajectories is not simple should

not be the reason for rejecting this research modality

which is potentially richer. In Section III, it is shown

that the mathematical basis for studying continuously

encoded trajectories is in fact as well developed as

that of the narrow-pulse approximation.

Notion of Eigenfunction

The dynamics of particles is often represented by a

linear operator. For instance, diffusive dynamics is

represented by the Laplace operator or, more gener-

ally, by an elliptic second-order differential operator.

Among a variety of functions on which a linear opera-

tor can act, the eigenfunctions are those which are

invariant under the action of the operator, up to multi-

plicative factors. Eigenfunctions are the ‘‘elementary

blocks’’ for describing the action of an operator in an

appropriate functional space. The Laplace operator in

a bounded domain V with Dirichlet, Neumann or Ro-

bin boundary condition is thoroughly investigated in

mathematics (48, 49). It is well known that this opera-

tor has a discrete spectrum and an infinite set of eigen-

functions um(r) (enumerated by m ¼ 0,1,2,. . .)

DumðrÞ þ lm umðrÞ ¼ 0 ðr 2 OÞ;

D
q
qn

umðrÞ þ K umðrÞ ¼ 0 ðr 2 qOÞ;
[16]

where D and K are the macroscopic transport coeffi-

cients (Sections ‘‘Microscopic Dynamics’’ and

‘‘Boundary Condition’’). The corresponding eigenval-

ues lm are positive. It is convenient to enumerate the

eigenvalues in an ascending order: 0 � l0 � l1 � l2
� . . ., increasing up to infinity. The number of eigen-

values lm smaller than l . 0 obeys the Weyl asymp-

totic law (50)

#fm : lm < lg / ld=2 ðl ! 1Þ: [17]

The eigenfunctions um(r) are orthogonal and con-

veniently normalizedZ
O

dr umðrÞu�m0 ðrÞ ¼dm;m0 ; [18]

where the asterisk denotes a complex conjugate, and

dm,m0 is the Kronecker symbol (dm,m0 ¼ 1 for m ¼ m0,
and 0 otherwise). This normalization implies that the

eigenfunctions are in units of m�d/2, while the eigen-

values are in units of m�2, independently of the

dimension d.
The Laplace operator eigenfunctions satisfy the

completeness relation,
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X
m

umðrÞu�mðr0Þ ¼ dðr� r0Þ;

which allows one to decompose any square integra-

ble function u(r) on the complete basis of eigen-

functions. For this purpose, one multiplies the above

relation by u(r0) and integrates over V:

X
m

umðrÞ
Z
O

dr0 u�mðr0Þ uðr0Þ ¼
Z
O

dr0 dðr� r0Þ uðr0Þ

¼ uðrÞ:

In the field of wave propagation, Laplacian eigen-

functions have a natural interpretation as vibration

modes. Any vibration mode can be individually

excited at the corresponding (eigen) frequency. For

diffusion, a geometrical interpretation is less appa-

rent. For instance, the diffusive propagator can be

decomposed into a sum of eigenfunctions which are

‘‘mixed’’ with different time-dependent weights:

Gtðr; r0Þ ¼
X
m

u�mðrÞumðr0Þe�Dlmt: [19]

It is easy to check that the right-hand side of this

relation satisfies Eqs. [3,4,6] that uniquely determines

the diffusive propagator Gt(r,r
0). Each eigenvalue

sets a ‘‘lifetime’’, (Dlm)
�1, of the corresponding

eigenstate.

The information hidden in eigenfunctions is very

rich but difficult to extract in an experiment. In con-

trast to wave equation, there is no ‘‘resonance fre-

quency’’ at which a particular eigenmode can be

excited. In addition, the preparation of a diffusive

system in a particular eigenstate is problematic. Dis-

tinguishing contributions from individual eigenmodes

is therefore challenging. Nonetheless, Song and

coworkers reported an experimental demonstration

of the excitation and detection of a wide range of

eigenmodes in porous media by exploring the inho-

mogeneous internal magnetic field in the pore space

(51–53).
What can the shape of an eigenmode tell us? We

start with the ground eigenmode u0 which, according
to Perron-Frobenius theorem, is the unique eigen-

mode which is positive whole domain. For a purely

reflecting boundary, the ground eigenmode u0 is a

constant which is a truly equilibrium state of a sys-

tem. In this case, the system tends to diminish all

fluxes and reaches its equilibrium when all the fluxes

are zero (a constant density). The associated (lowest)

eigenvalue l0 is zero that corresponds to an infinite

lifetime of the equilibrium eigenmode.

When a boundary is (partially) absorbing, all the

eigenvalues are strictly positive, and the equilibrium

state is zero concentration (no particle left). In the

long-time regime, the ground eigenmode u0 provides
the main contribution to Eq. [19], while the other

eigenmodes are exponentially small in comparison

with u0. Although the ground eigenmode is not a

truly equilibrium state, it plays a role of a steady

state. The ‘‘survived’’ particles are distributed in a

diffusion-confining domain to minimize their losses,

i.e., to be as far from the absorbing boundary as pos-

sible (Fig. 3). The ground eigenmode reaches its

maximum in the ‘‘center’’ of the domain (this is not

necessarily a barycenter or another ‘‘geometrical’’

center, but a ‘‘diffusion center’’).

The other eigenmodes um(r) are orthogonal to u0.
Since u0 is positive, the um(r) must change their sign

over the domain. In other words, the eigenfunctions

oscillate, although these ‘‘oscillations’’ are adapted to

the shape of the domain and are not necessarily peri-

odic (Fig. 3). The square root of an eigenvalue,
ffiffiffiffiffiffi
lm

p
,

determines a spatial frequency (the inverse of a

wavelength) of the associate eigenmode. An analogy

with sine and cosine functions (which are the Lapla-

cian eigenmodes on the interval) is instructive.

How can one interpret the shape of an oscillating

eigenfunction? Its negative values prohibit thinking

of an eigenfunction as a density, but one can consider

it as an excess/deficiency distribution. If a system

was initially prepared in such an eigenstate, c(r, 0) ¼
um(r), the evolution in time would not change

the initial spatial profile but would only attenuate

it by the corresponding exponential factor:

cðr; tÞ ¼ e�DlmtumðrÞ. The shape of an eigenfunction

visually shows diffusive exchange areas of a confin-

ing domain. The particles diffuse from maxima to

minima of an eigenfunction to level off any excess or

deficiency. This interpretation allows one to use Lap-

lacian eigenfunctions to detect exchange areas, while

the associated eigenvalues give the characteristic

time and length scales of an exchange process.

Although separating these contributions is difficult in

an experiment, the related theoretical analysis is

expected to be instructive, especially for complex

geometries.

Asymptotic Behavior

Most theoretical results on restricted diffusion are

somehow related to the asymptotic behavior of the

diffusive propagator Gt(r,r
0). These asymptotic

results are often expressed through explicit analytical

formulas that makes them particularly useful in prac-

tice (e.g., for fitting the macroscopic signal or for
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extracting information on the geometry of a confin-

ing medium).

Long-Time Regime. The long-time regime, for

which the diffusion length
ffiffiffiffiffiffiffi
DT

p
is much longer than

the size L of a confining domain, is rather simple for

investigation. The contributions of eigenmodes in

Eq. [19] progressively vanish as time goes on so that

the ground eigenmode with the lowest eigenvalue l0
becomes the only significant contribution when

T 	 ðDl1Þ�1 
 ðDl2Þ�1 
 . . .

The eigenvalue l1 sets the lower time bound

(Dl1)
�1 for the long-time regime. Since l1 is pre-

sumably in the order of L�2, the condition
ffiffiffiffiffiffiffi
DT

p
	 L

is enough for practical purposes.

The lowest eigenvalue l0 determines the main

transport characteristics of a system, e.g., the reaction

rate of a diffusion-mediated reactor (54–56) and sur-

face relaxation times in NMR (57). The distinction

between purely and partially reflecting boundaries is

pronounced in the long-time regime. The propagator

either approaches a constant (pure reflections) or

exponentially decays (partial reflections). Although

too idealized from a physical point of view, the con-

cept of a purely reflecting boundary is justified if the

lifetime (Dl0)
�1 of the ground eigenmode is much

longer than the observation time. In this situation,

many results can be simplified (see later).

It is worth noting a significant distinction between

unrestricted diffusion and restricted diffusion in a

bounded domain. For fixed positions r and r0, the ex-
ponential function in Eq. [2] approaches 1 as t going
to infinity so that the propagator for free diffusion in

the whole space shows a power-law decay:

Gtðr; r0Þ ’
1

ð4pDtÞd=2
ðt ! 1Þ;

in sharp contrast to an exponential approach to a con-

stant for a bounded domain with Neumann boundary

condition

Gtðr; r0Þ ’
1

V
þ u�1ðrÞu1ðr0Þe�Dl1t ðt ! 1Þ:

At the same time, both a relaxing boundary of a

bounded domain and relaxing sinks in an unbounded

medium lead to an exponential decay of the signal.

Short-Time Regime. The short-time regime is a

different story. On one hand, the smaller the time t,
the larger is the number of contributing eigenfunc-

tions in Eq. [19]. In the limit of t going to 0, the dif-

fusive propagator approaches a Dirac distribution

that makes a numerical computation challenging.

Figure 3 First four eigenfunctions of the Laplace operator in the unit disk with Dirichlet (top)

and Neumann (bottom) boundary conditions (the associated eigenvalues are shown). Apart from

the positive ground eigenmode (on the left), the other eigenfunctions ‘‘oscillate’’ that can be

interpreted as diffusive exchanges between their maxima and minima. The larger the eigenvalue

lm (the smaller the corresponding wavelength), the higher is the oscillation spatial frequencyffiffiffiffiffiffi
lm

p
but the shorter is the ‘‘lifetime’’ ðDlmÞ�1

of the eigenmode. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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One can appreciate this difficulty by computing

numerically the simplest propagator for restricted dif-

fusion on the unit interval for very small times t:

Gtðx; x0Þ ¼ 1þ 2
X1
m¼1

cosðpmxÞ cosðpmx0Þe�Dp2m2t:

[20]

This formula comes from the general spectral

decomposition [19] in which cos (pmx) and p2m2 are

the eigenfunctions and eigenvalues of the Laplace

operator on the unit interval with reflecting end-

points.

On the other hand, the smaller the time, the closer

is the Gt(r, r
0) to the free diffusive propagator which

is known explicitly. In fact, the particles just do not

have enough time to explore the domain and to

‘‘feel’’ the presence of restricting boundaries. When

points r and r0 do not belong to the boundary, one

can use the short-time approximation:

X
m

u�mðrÞumðr0Þe�Dlmt ’ 1

ð4pDtÞd=2
exp �ðr� r0Þ2

4Dt

" #

ðt ! 0Þ: [21]

This simple formula allows one to derive a number

of asymptotic results.

Series with Eigenvalues. As discussed in Section

III, one often needs to investigate the short-time as-

ymptotic behavior of series involving the Laplacian

eigenvalues:

FðtÞ ¼
X
m

Fme
�Dlmt; [22]

with some coefficients Fm.
A general but rough estimation of the series relies

on the fact that e�x is close to 1 for small x and to 0

for large x. When t is small enough, there are many

eigenvalues for which Dlmt � 1. At the same time,

there are always an infinity of eigenvalues for which

Dlmt 	 1 (because the sequence of lm increases

toward infinity). The time t sets a border index M
between these two cases: DlMt � 1. The Weyl’s law

[17] relates lM to M as M / l
d=2
M / t�d=2. In a first

approximation, e�Dlmt can be replaced by 1 for m �
M, and by 0 otherwise. This crude approximation

yields

FðtÞ ’
XM
m¼1

Fm /
Zt�d=2

1

Fmdm:

For example, if Fm / ma�1, one gets

FðtÞ / t�ad=2 ðt ! 0Þ:

In the case Fm ¼ 1 (a ¼ 1), one deduces the

short-time asymptotic behavior of the spectral func-

tion Z(t) or, equivalently, of the averaged probability

of return to the origin:

ZðtÞ �
X
m

e�Dlmt ¼
Z
O

drGtðr; rÞ / t�d=2 ðt ! 0Þ:

This rough estimation approach yields in general

correct asymptotic behavior, but it fails to give pro-

protionality factors or correction terms.

Laplace Transform and Summation Techniques.
The knowledge of the asymptotic behavior alone is

insufficient for an accurate comparison between

theory and experiment. For instance, the determina-

tion of the surface-to-volume ratio of a diffusion-con-

fining domain at short times is based on the t3/2 cor-
rection term and its coefficient, as explained in sec-

tion ‘‘Short-Time Diffusion Regime: Corrections’’.

A more accurate analysis relies on the Laplace

transform L of the series in Eq. [22]

F̂ðsÞ � L½FðtÞ�ðsÞ �
Z1
0

dt e�tsFðtÞ ¼
X
m

Fm

sþ Dlm

If the coefficients Fm are rational functions of lm,

F̂ðsÞ can be reduced to an algebraic expression which

contains the Laplace transform ẐðsÞ of the spectral

function Z(t) and its derivatives (1)

ẐðsÞ � L ZðtÞ½ �ðsÞ ¼
X
m

1

sþ Dlm
: [23]

As an arbitrary example, let us take Fm ¼ 1=lm,
for which

F̂ðsÞ ¼
X
m

1

lmðsþ DlmÞ
¼
X
m

1

s

1

lm
� D

sþ Dlm

� �

¼ D
Ẑð0Þ � ẐðsÞ

s
:

A series expansion of F̂ðsÞ in powers of 1/s as s
going to infinity allows one to reconstruct the asymp-

totic behavior of F(t) as t going to 0 by using the

relation
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L½tb�1�ðsÞ ¼
Z1
0

dt tb�1 e�ts ¼ s�b
Z1
0

d~t~tb�1 e�~t

¼ s�bGðbÞ;

G(b) being the Gamma function.

For simple shapes such as interval, disk, and

sphere, the eigenvalues lm are known to be the

squared zeros am of some explicit functions (e.g.,

Bessel functions for the disk) (58, 59). In this case,

the function ẐðsÞ can be calculated explicitly (60)
that opens a possibility for the investigation of vari-

ous spectral series. For instance, the constants

z3=2; z�1; z�2 that determine the geometry depend-

ence of the macroscopic signal in the short-time and

long-time regimes (see sections ‘‘Short-Time Diffu-

sion Regime: Corrections’’ and ‘‘Long-Time Diffu-

sion Regime’’), were found in this way (1).
In this section, the question of convergence is not

addressed. In practice, the convergence of spectral

series can be improved by differentiation or integra-

tion. For instance, the spectral series of the derivative

of F̂ðsÞ, which represents the Laplace transform of

�tF(t), converges better than that of F̂ðsÞ:

� F̂0ðsÞ ¼ L½tFðtÞ�ðsÞ ¼
X
m

Fm

ðsþ DlmÞ2
:

When the asymptotic behavior of F̂0ðsÞ is found, it
is easy to deduce that of F(t). Similarly, the integra-

tion of F(t) improves the convergence of the series in

Eq. [22] due to an additional factor l�1
m . A more

detailed discussion of these issues goes beyond the

scope of this work.

III. THEORETICAL ADVANCES

In Part 1, a matrix formalism is presented as an effi-

cient numerical tool for studying restricted diffusion

in NMR. The Bloch-Torrey equation that describes

the evolution of the magnetization in time is pro-

jected onto the Laplacian eigenfunctions. In this ba-

sis, the magnetization is represented by an infinite-

dimensional vector which is composed of unknown

time-dependent coefficients. The use of the Laplacian

eigenfuctions reduces the Bloch-Torrey equation, a

PDE in space and time, to a linear system of first-

order differential equations in time. A solution of this

system is then written in a compact matrix form. The

two governing infinite-dimensional matrices L and B
represent the Laplace operator and the applied mag-

netic field B(r), respectively, in the Laplacian eigen-

basis:

�m;m0 ¼
Z
O

dr u�mðrÞð � L2DÞum0 ðrÞ ¼ dm;m0lmL
2;

Bm;m0 ¼
Z
O

dr u�mðrÞBðrÞum0 ðrÞ; [24]

where the factor L2 is introduced for getting dimen-

sionless matrix elements. Once these matrices are

found for a given diffusion-confining domain, further

computation is easy, rapid, and very accurate. Explicit

formulas for the matrices L and B for simple shapes

such as interval, disk, and sphere are given in (1, 61).
At the same time, a theoretical analysis relying on

the above matrix formalism faces considerable diffi-

culties because the governing matrices B and L do

not commute. Another mathematical approach is

required for the investigation of the macroscopic sig-

nal. In this section, we present such an approach and

explain how the moments of a random phase shift

can be expressed in terms of the matrices L and B.
This article focuses on the zeroth, first, and second

moments which provide the major contribution to the

macroscopic signal. The short-time and long-time

regimes are discussed in detail. The obtained results

are broadly used in practice to interpret experimen-

tally measured signals and to extract information on

the geometry of a diffusion-confining medium.

Formal Probabilistic Description

In most diffusion-encoding NMR experiments, the

temporal and spatial variations of an applied mag-

netic field are factored:

Bðr;tÞ ¼ bf ðt=TÞBðrÞ;

where b is the dimensional intensity of the magnetic

field (in Tesla), f(t) is the effective dimensionless

temporal profile, and B(r) is the dimensionless spatial

profile. The temporal profile f(t) is often chosen to

satisfy the rephasing condition

ZT
0

dt f ðt=TÞ ¼ 0: [25]

A physical meaning of the rephasing condition is

simple. If nuclei were immobile, their total phase

shift would be strictly zero because an initial dephas-

ing would be completely compensated by a later

rephasing. For such immobile nuclei, the macro-

scopic signal at observation time T would be 1. When

LAPLACIAN EIGENFUNCTIONS IN NMR 277

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



nuclei diffuse, the rephasing is not complete, and the

macroscopic signal decreases. This experimentally

measurable attenuation characterizes diffusive

motion. In practice, a temporal profile is usually

composed of two rectangular or trapezoidal pulses of

opposite polarities (Fig. 4). The profile f(t) may also

incorporate the inversion effect of the 1808 rf pulse.
The standard choice for a spatial profile B(r) is a lin-
ear gradient in a given direction e: B(r) ¼ (e � r)/L.

The definition [9] of the phase shift can be written

as follows

j ¼ gbT|{z}
q

f; f ¼
Z1
0

dt f ðtÞBðXtÞ; [26]

where we changed the time variable and rescaled the

reflected Brownian motion: Xt ¼ r(tT). From now on,

t is the dimensionless time variable varying from 0 to

1. In Eq. [26], f is a new random variable represent-

ing a phase shift, while the factor q ¼ gbT is the

dimensionless intensity. For a linear gradient of in-

tensity g, one has b ¼ gL, and

q ¼ ggTL

is the ratio between the size L of a diffusion-confin-

ing domain and the dephasing length (ggT)�1 which

is induced by the applied magnetic field gradient.

In mathematical terms, the problem consists in

finding the probability density P(f) of the random

variable f for a given magnetic field [functions f(t)
and B(r)] and a given confining domain V. This

problem can formally be solved by writing the defini-

tion of the characteristic function:

Efeiqfg ¼
Z1
�1

df eiqfPðfÞ:

According to Eq. [10], Efeiqfg is the macroscopic

signal, for which an explicit matrix formula was

derived in Part 1. For instance, for a time-independent

magnetic field, with f(t) ¼ 1, Eq. [I.29] from (2) states

that

Efeiqfg ¼ ðUe�ðp�þiqBÞ ~UÞ; [27]

where

p ¼ DT=L2

is the dimensionless diffusion coefficient that charac-

terizes how far the nuclei diffuse on average during

the time T. This is the squared ratio between the diffu-
sion length

ffiffiffiffiffiffiffi
DT

p
and the size L of a diffusion-confin-

ing domain.

The infinite-dimensional vectors U and ~U in Eq.

[27] represent an initial density r(r) and a sampling

or pickup function ~rðrÞ in the Laplacian eigenbasis:

Um ¼ V1=2

Z
O

dr u�mðrÞrðrÞ;

~Um ¼ V�1=2

Z
O

dr umðrÞ~rðrÞ
[28]

(the prefactors V1/2 and V�1/2 are introduced for get-

ting dimensionless quantities). If the density of non-

polarized spins at the beginning of the experiment is

uniform and if the exciting 908 rf pulse is spatially

homogeneous, the initial magnetization is propor-

tional to the initial density r(r), and thus uniform:

r(r) ¼ 1/V. In addition, the sampling or pickup func-

tion ~rðrÞ is often uniform throughout the sample:
~rðrÞ ¼ 1. In this case, one gets

U�
m ¼ ~Um ¼ V�1=2

Z
O

dr umðrÞ: [29]

Figure 4 Examples of effective temporal profiles: (a)

steady, (b) Stejskal-Tanner rectangular, (c) trapezoidal.

The 1808 rf pulse is taken into account by the opposite

sign of the second gradient pulse. All three examples

satisfy the rephasing condition [25]. It is reminded that

time is dimensionless here so that the observation time T
(formation of an echo) corresponds to t ¼ 1. The duration

d of two gradient pulses and the ramp time t are also

dimensionless.
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Figure 5 Probabilistic computation of the zeroth (left) and first (right) moments. In both cases,

a set of Brownian trajectories is considered which started from a randomly chosen point r0 and

arrived into a small vicinity of a random point r. The zeroth moment Ef1g represents a

‘‘fraction’’ of the nuclei (or trajectories) which survived up to the observation time. For the first

moment Effg, an intermediate position r1 is encoded by an infinitely short magnetic field pulse

d(t � t1)B(r1). Two diffusive propagators, Gt1(r0,r1) and G1�t1(r1,r), describe the motion of

nuclei between r0 and r1, and that between r1 and r, respectively. Similarly, two intermediate

positions r1 and r2 are encoded by two magnetic field pulses for the second moment Eff2=2g,
and so on.

In a general situation of a given temporal profile

f(t), Eq. [27] can be extended by dividing the time

interval in small subintervals [tk, tkþ1) (k ¼ 0,. . .,K,
with t0 ¼ 0 and tKþ1 ¼ 1) and approximating f(t) by a

piecewise constant function: f(t) ¼ fk for t 2 ½tk; tkþ1Þ.
As shown in Part 1, the characteristic function is

Efeiqfg ’ ðU
YK
k¼0

e�ðp�þiq fkBÞðtkþ1�tkÞ ~UÞ:

The matrices L and B and the vectors U and ~U
fully determine the characteristic function Efeiqfg
and, through the inverse Fourier transform, the prob-

ability density P(f). Formally, the problem of finding

the random phase shift f (or j) is therefore solved.

Moreover, one can expand the characteristic function

into a Taylor series in powers of q in order to obtain

the moments Effng:

Effng ¼ i�n lim
q!0

qn

qqn
Efeiqfg

� �
:

However, the matrix structure of Eq. [27] makes

further theoretical analysis challenging. In particular,

the differentiation of matrix exponentials is difficult,

both analytically and numerically. It is thus important

to derive an alternative expression for the moments

by considering the random phase f as a functional

[26] of reflected Brownian motion.

Zeroth Moment

The analysis is started by considering the zeroth

moment of the random phase j: Eff0g ¼ Ef1g. At

first thought, it may sound nonsense to take an aver-

age of a constant. One should not forget, however

that this average includes implicitly restrictions on

the trajectories of reflected Brownian motion in a dif-

fusion-confining domain. Moreover, the starting and

arrival points may be chosen specifically that would

also influence the results. The following computation

of the zeroth moment illustrates many concepts of

the probabilistic description. This computation corre-

sponds to an experiment, in which diffusion weight-

ing is realized through surface relaxation (without

any applied gradient).

What does the expectation Ef1g mean? It is

reminded that particles started with a given initial

density r(r), i.e., the starting point r0 is picked up at

random, with the probability r(r0)dr0. When a nu-

cleus started from r0, its probability for arriving in a

vicinity dr of a point r at time T is G1(r0, r)dr (it is

reminded that the observation time T corresponds to

dimensionless time t ¼ 1). The contribution of such

Brownian trajectories is weighted with a sampling

function ~rðrÞ (Fig. 5). The average over all starting

and arrival points r0 and r reads as follows:

Ef1g ¼
Z
O

dr0rðr0Þ
Z
O

dr G1ðr0; rÞ~rðrÞ:

The eigenmode expansion [19] for the diffusive

propagator G1(r0,r) allows one to separate two

integrals:
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Ef1g ¼
X
m

Z
O

dr0rðr0Þu�mðr0Þ

2
4

3
5e�DlmT

�
Z
O

dr umðrÞ~rðrÞ

2
4

3
5:

These two integrals give the elements of the vec-

tors U and ~U that is a spectral representation of the

initial density r(r0) and of the sampling function
~rðrÞ in the Laplacian eigenbasis. If e�DlmT is consid-

ered as a diagonal element of the matrix e�pL, the

above sum becomes a matrix product

Ef1g ¼ ðU e�p� ~UÞ: [30]

Although this relation could be directly deduced

from Eq. [27] by putting q ¼ 0, it is prefered to give

this probabilistic ‘‘derivation’’ that will serve as an

illustration for other moments.

When the initial density and the sampling function

are uniform, Eq. [29] allows one to retrieve the clas-

sical spectral expansion by Brownstein and Tarr (57):

Ef1g ¼
X
m

1

V

Z
O

dr umðrÞ

������
������
2

e�DlmT : [31]

If there is no magnetic field gradient, the macro-

scopic signal is simply equal to the zeroth moment:

E ¼ Ef1g.
For a purely reflecting boundary (when the dimen-

sionless surface relaxavity h ¼ KL/D is 0), the

ground eigenfunction u0 is constant. Since the other

eigenfunctions are orthogonal to u0, the only nonzero

term in the above sum comes from the ground state

m ¼ 0 for which l0 ¼ 0 so that E ¼ Ef1g ¼ 1. Natu-

rally, if there is no relaxation mechanism at all (nei-

ther surface or bulk relaxation nor gradient encod-

ing), the macroscopic signal is constant.

For a partially absorbing boundary (h . 0), all the

eigenvalues are strictly positive that yields a multiex-

ponential decrease of the macroscopic signal in time.

Given the spectral expansion [19] of a propagator, a

multiexponential behavior is a natural feature of re-

stricted diffusion [e.g., its consequences for a CPMG

sequence is discussed in (62)]. Deviations from this

typical behavior are in general caused either by too

many contributing eigenmodes in the short-time re-

gime (e.g., asymptotic behavior [21] or power-law

decays) or by too few contributing eigenmodes in the

long-time regime. In the latter case, the major contri-

bution comes from the lowest eigenvalue l0 for

which the exponential factor in Eq. [31] is less atte-

nuated:

E ’ U2
0e

�Dl0T :

If the surface relaxation is weak (small h), a per-

turbative analysis shows that the lowest eigenvalue

l0 is proportional to h: l0 ’ hðS=VÞ=L, where S is

the total surface area of a diffusion-confining medium

(63). In addition, U2
0 ’ 1 (for small h) that yields

E ’ exp½�KðS=VÞT�;

where K is the surface relaxivity (section ‘‘Boundary

Condition’’). This fast-diffusion regime allows one to

determine the surface-to-volume ratio S/V of a con-

fining domain (57). This simple result is often used

to characterize porous media. If a porous medium is

considered as an ensemble of disconnected ‘‘pores,’’

the macroscopic signal is the sum of signals from

individual pores. It can also be written as the Laplace

transform of the distribution of the surface-to-volume

ratios:

E ’
X
pore i

Ii exp½�KðS=VÞiT�

¼
Z1
0

ds e�sT
X
pore i

Iidðs� KðS=VÞiÞ
" #

;

where Ii is the relative signal intensity from a pore i.
Since the surface-to-volume ratio of a sphere-like

pore is related to its size, one can extract the pore

size distribution (64, 65).

First Moment

When a diffusion-encoding gradient is applied, the

first and higher-order moments have to be analyzed.

Since the magnetic field varies both in time and

space, it is convenient (and even necessary) to sepa-

rate temporal and spatial variations. For this purpose,

a magnetic field is formally written as follows:

bf ðtÞBðrÞ ¼ b
Z1
0

dt1f ðt1Þ ½dðt� t1ÞBðrÞ�:

To calculate the first moment, one can find the

phase shift due to an infinitely short magnetic field

pulse bd(t � t1)B(r) and then ‘‘sum up’’ all contribu-

tions with weights f(t1):
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Effg ¼
Z1
0

dt1f ðt1Þ EfBðXt1Þg: [32]

This relation simply reflects the fact that expecta-

tion is a linear operation. The one-point correlation

function EfBðXt1Þg can be interpreted as the average

phase shift acquired due to an infinitely short mag-

netic field pulse d(t � t1)B(r). The dynamics of the

nuclei diffusing without a magnetic field (except for

the moment t1) is characterized by a diffusive propa-

gator. As Brownian motion is a Markov process

(with no memory), one can ‘‘split’’ a random trajec-

tory of a nucleus into two independent parts, before

and after time t1 (Fig. 5). In other words,

� at time t ¼ 0, one chooses a random starting

point r0 with the initial density r(r0) (or the

starting probability r(r0)dr0);
� during time t1, a nucleus diffuses from r0 into

a small vicinity dr1 of a random point r1 with

probability Gt1(r0,r1)dr1;
� the nucleus acquires the phase B(r1) at point r1

due to the infinitely short magnetic field pulse;

� during the remaining time 1 � t1, the nucleus

diffuses from r1 into a small vicinity dr of a

random point r with probability G1�t1(r1,r)dr;
� its contribution is weighted by a pickup or

sampling function ~rðrÞ.
Here, the propagators Gt1

(r0,r1) and G1�t1
(r1,r) al-

ready represent the averages over all Brownian trajec-

tories between r0 and r1 during time t1 and between r1
and r during time 1 � t1. The average phase acquired

due to the infinitely short magnetic field pulse is then

obtained by averaging over the points r0, r1, and r:

Using the eigenmode expansion [19] for a diffu-

sive propagator, one gets the above spectral decom-

position. Representing the eigenvalues lm by the di-

agonal elements of the matrix L, one can write the

above relation in a compact matrix form

EfBðXt1Þg ¼ ðU e�p�t1 B e�p�ð1�t1Þ ~UÞ: [33]

Here, U, e�pLt, B, and ~U are matrix representa-

tions in the Laplacian eigenbasis for r(r), Gt(r, r
0),

B(r), and ~rðrÞ, respectively. As previously, each ma-

trix in this product has a clear interpretation. In fact,

the trajectory is started with a given initial density

(vector U). During the time interval between 0 and

t1, there is no gradient so that the evolution is

described by the matrix e�pLt1. Then, at time t1, a nu-
cleus acquires a phase shift (matrix B). After that, no
magnetic field is applied between t1 and 1 which is

represented by e�pL(1�t1). Finally, the vector ~U is

written to include the pickup function. The first

moment is then obtained by integrating EfBðXt1Þg
with the temporal profile f(t1) according to Eq. [32].

The reader’s attention is directed to the following

point. In most practical situations, the pickup func-

tion ~rðrÞ is constant and can be omitted. In this case,

the presence of the propagator G1�t1
(r1,r) in the

above integral form of EfBðXt1Þg may seem to be

unnecessary. This is actually true for a purely reflect-

ing boundary (without surface relaxation, h ¼ 0).

Since there is no gradient or other relaxing mecha-

nisms during the time interval [t1,1], the magnetiza-

tion does not decay (i.e., the number of excited

nuclei is preserved). In other words, the integral of

the propagator G1�t1
(r1, r) over r is equal to 1 (prob-

abilistic normalization) and it can thus be omitted. In

addition, if the initial density is uniform, one gets Um

¼ dm,0 so that

EfBðXt1Þg ¼ B0;0; [34]

independently of time t1. If the rephasing condition

[25] holds, the first moment Effg vanishes. How-

ever, this reasoning fails for relaxing boundaries (h
. 0). In this case, the propagator G1�t1(r1, r) is man-

datory to guarantee that the magnetization of nuclei

is survived up to the observation time. An omission

of this propagator would lead to larger (overesti-

mated) moments and erroneous results. This remark

concerns all the moments.

Unexpectedly, a numerical computation of the

first moment is more complicated than that of the

macroscopic signal. In fact, in the latter case, one

needed to compute the matrix product in Eq. [27]

only once (for a given set of the physical parameters

p, q, and h). In contrast, the time integral in Eq. [32]

has to be first approximated by a finite sum, and the

matrix product in Eq. [33] has to be calculated for

each term in this sum. The computation becomes

much harder for higher-order moments that involves

an approximation of multiple integrals (see later).

Another substantial difference is that the computation

of the macroscopic signal, which is based only on

matrix products, is very accurate, while that for the

moments involves an approximation of the time inte-

gral. On the other hand, as shown later, a theoretical
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analysis of the moments is much easier than that of

the macroscopic signal.

Second Moment

Using similar probabilistic arguments, the second

and higher-order moments can be written in a com-

pact matrix form (1), e.g.,

Eff2=2g ¼
Z1
0

dt1f ðt1Þ
Z1
t1

dt2f ðt2Þ EfBðXt1ÞBðXt2Þg:

[35]

In what follows, the double time integral in Eq.

[35] is denoted as ,. . ..2. The two-point correlation

function is

EfBðXt1ÞBðXt2Þg
¼ ðU e�p�t1 B e�p�ðt2�t1ÞB e�p�ð1�t2Þ ~UÞ: [36]

As for the first moment, the probabilistic interpre-

tation of this result is straightforward: starting with a

given initial density (vector U), a nucleus experien-

ces the magnetic field (two matrices B) at two suc-

cessive (random) positions at times t1 and t2 along its

stochastic trajectory. A diffusive motion between

these positions is described by the matrices e�pLt1,

e�pL(t2�t1), and e�pL(1�t2). The last matrix ensures that

the nucleus survives until the observation time, at

which the magnetization is weighted by a sampling

function (vector ~U).

A simplification can be achieved when there is no

surface relaxation (h ¼ 0). When the initial density

r(r) and the sampling function ~rðrÞ are uniform, Eq.

[29] yields Um ¼ ~Um ¼ dm;0. The second moment is

then equal to the temporal average ,. . ..2 of the

first diagonal element of the matrix Be�p�ðt2�t1ÞB:

E f2=2
� �

¼ B e�p�ðt2�t1ÞB
h i

0;0

� �
2

[37]

(throughout the text, the subscript 0,0 denotes the first

diagonal element of a matrix).

As we mentioned earlier, the moments are much

more appropriate for theoretical analysis. For

instance, Robertson investigated diffusion between

two parallel plates by evaluating the second moment

(66). As a matter of fact, the majority of theoretical

studies of restricted diffusion in NMR are focused on

the second moment [see (1) and references therein].

The reason is twofold.

1. The second moment provides the major con-

tribution to the macroscopic signal for rela-

tively small gradients (small q). In fact, the

characteristic function can be expanded into a

Taylor series in powers of q up to the second

order:

E ¼ Efeiqfg ’ 1þ iqEffg�q2Eff2=2g:

This relation can also be written, with the

same accuracy, in a more familiar form

E ’ exp iqEffg � q2

2
Eff2g � ½Effg2
	 
� �

:

[38]

The mean phase Effg determines an oscillat-

ing part, while the standard deviation

Eff2g � ½Effg�2 defines an attenuation. For

spin-echo experiments, the rephasing condition

[25] cancels the first moment that yields the

‘‘Gaussian phase approximation’’ (GPA)

E ’ exp½�q2Eff2=2g�: [39]

In many cases, the knowledge of the second

moment is enough for a satisfactory descrip-

tion of the macroscopic signal.

2. A technical complexity of the analysis grows

rapidly with the moment order. Few theoreti-

cal results are known about higher-order

moments. Bergman and Dunn developed a

formalism for computing the fourth moment

in the case of a periodic porous medium (67,
68). Exact analytical expressions for the

fourth and sixth moments are derived in (69)
for the specific case of a cosine magnetic

field. The discussion of higher-order moments

goes beyond the scope of this article.

Short-Time Diffusion Regime:
Leading Term

For a short time T or a small diffusion coefficient D,
the average displacement

ffiffiffiffiffiffiffi
DT

p
of the spin-bearing

particles is small in comparison with the size L of a

confining domain: p ¼
ffiffiffiffiffiffiffi
DT

p
=L � 1. If there is no

surface relaxation (h ¼ 0), the second moment is

given by Eq. [37], in which the exponential function

can be formally expanded into a power series up to

the first order in p:

Eff2=2g’½BB�0;0 h1i2 � phðt2 � t1Þi2½B�B�0;0;
[40]
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where

h1i2 ¼
Z1
0

dt1f ðt1Þ
Z1
t1

dt2f ðt2Þ ¼
1

2

Z1
0

dtf ðtÞ

0
@

1
A2

and

hðt1 � t2Þi2 ¼
Z1
0

dt1f ðt1Þ
Z1
t1

dt2f ðt2Þ ðt1 � t2Þ

¼
Z1
0

dt

Z t

0

dt0f ðt0Þ

0
@

1
A2

�
Z1
0

dt f ðtÞ

0
@

1
A Z1

0

dt

Z t

0

dt0f ðt0Þ

0
@

1
A:

Under the rephasing condition [25], h1i2 ¼ 0 and

hðt1 � t2Þi2 ¼
Z1
0

dt

Z t

0

dt0f ðt0Þ

0
@

1
A2

: [41]

For a given profile f(t), the computation of this av-

erage is straighforward, either analytically (if possi-

ble), or numerically. For instance, one finds for a

trapezoidal profile from Fig. 4(c):

hðt1 � t2Þi2 ¼ 1

2
t2 þ tdþ 1

2
d2 � 7

15
t3

� 7

6
t2d� td2 � 1

3
d3:

If the ramp time t is equal to 0, the trapezoidal pro-

file is replaced by a rectangular one, for which h(t1 �
t2)i2 ¼ d2(1/2 � d/3) (20). When d ¼ 1/2, one

retrieves h(t1 � t2)i2 ¼ 1/12.

The constant ½B�B�0;0 can be written in an inte-

gral form [see (1) for details]:

z1�½B�B�0;0¼
X
m

B0;mL
2lmBm;0 ¼

L2

V

Z
O

drjrBðrÞj2;

[42]

which is equal to 1 for a linear gradient. As a conse-

quence, one finds

Eff2=2g ’ phðt1 � t2Þi2: [43]

For weak gradients, the macroscopic signal takes

the classical Gaussian form

E ’ exp½�q2phðt1 � t2Þi2�

¼ exp �Dg2g2T3

Z1
0

dt

Z t

0

dt0 f ðt0Þ

0
@

1
A2

2
64

3
75: [44]

This formula becomes exact for free (unrestricted)

diffusion as shown by Stejskal and Tanner (70). The
combination Tg ¼ (Dg2g2)�1/3 defines a typical time

Tg which is needed for a diffusing nucleus to acquire a
sufficient phase shift for a considerable signal decay:

E ’ exp½�ðT=TgÞ3hðt1 � t2Þi2�: [45]

A faster-then-exponential decay of the macro-

scopic signal in time is a typical feature of unre-

stricted diffusion. In section ‘‘Long-Time Diffusion

Regime,’’ an alteration of this behavior by a geomet-

rical restriction is discussed.

Short-Time Diffusion Regime: Corrections

A careful revision of the above derivation reveals a

gross defect. A series expansion of the exponential

function in Eq. [37] is not mathematically allowed

since higher-order terms B�2B, B�3B, . . . are diver-

gent due to an unbounded increase of the elements

Lm,m with m. At the same time, this very increase

ensures a rapid convergence of the exponential func-

tion exp[�p(t2 � t1)L]. Some renormalization should

therefore be introduced. One can show that the first

correction term to Eq. [43] is not p2 as one might

intuitively expect, but p3/2.
A qualitative reason for the 3/2 power is simple.

In the short-time regime, only the motion of nuclei

near the boundary (within a distance in the order offfiffiffiffiffiffiffi
DT

p
) is restricted. The fraction of these nuclei,

forming a thin layer near the boundary, can be esti-

mated as the layer volume, S
ffiffiffiffiffiffiffi
DT

p
, divided by the

total volume V (Fig. 6). As a consequence, one

expects to retrieve the results for free diffusion for

the nuclei in the bulk, with some boundary correction

of the order ðS=VÞ
ffiffiffiffiffiffiffi
DT

p
/ p1=2. This correction was

accurately calculated by Mitra et al. by using a per-

turbation theory for a propagator for small p (71–73).
In general, the second moment for a purely reflecting

boundary (h ¼ 0) reads as follows (1):

Eff2=2g ¼
X1
k¼2

ð�1Þkzk=2pk=2h�ðt2 � t1Þk=2i2; [46]
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where the coefficients zk=2 depend on the geometry

of a diffusion-confining domain and on the spatial

profile of the magnetic field. The major contribution

comes from the term with the coefficient z1 given in

Eq. [42], while the first correction is

z3=2 ¼
4

3
ffiffiffi
p

p L3

V

Z
qO

dr
qB
qn

� �2

:

For a linear gradient in a given direction e, z1 ¼ 1

and

z3=2 ¼
4

3
ffiffiffi
p

p L

V

Z
qO

drðe � nðrÞÞ2: [47]

The scalar product (e � n(r)) is equal to the cosine of

the angle between the gradient direction e and the

normal n(r) to the boundary. When the confining me-

dium is statistically isotropic (i.e., all directions are

equivalent), the integral becomes independent (on

average) of the gradient direction e, and its computa-

tion is reduced to that for rotation-invariant domains

such as a disk or a sphere. Then, one gets

z3=2 ¼
4

3
ffiffiffi
p

p L

V

S

d
; [48]

where 1/d represents the average over all directions.

So, for a linear gradient in statistically isotropic

media, the second moment is

Eff2=2g ’ DT

L2
hðt1 � t2Þi2

� 1� 4

3
ffiffiffi
p

p S
ffiffiffiffiffiffiffi
DT

p

Vd

hðt2 � t1Þ3=2i2
hðt2 � t1Þi2

 !
; [49]

where p ¼ DT/L2 is substituted. The correction to the

main contribution is of order of S
ffiffiffiffiffiffiffi
DT

p
=V, while the

last ratio in Eq. [49] accounts for the temporal profile

used. For instance, for a rectangular two-pulse profile

of duration d ¼ 1/2, one finds

hðt2 � t1Þ3=2i2
hðt2 � t1Þi2

¼ 12ð4�
ffiffiffi
2

p
Þ

35
;

yielding the formula derived in Ref. (74). In the limit

of very short duration (d ? 0), one obtains

hðt2 � t1Þ3=2i2
hðt2 � t1Þi2

¼ 1ffiffiffi
2

p ;

and the above formula is reduced to that from Refs.

(71,72). Some other explicit cases are considered in

(1). In general, one can easily compute this coeffi-

cient for any given temporal profile F(t) by a numeri-

cal integration.

Mitra and coworkers suggested to apply Eq. [49]

(or its variations) to extract the surface-to-volume

ratio S/V of natural and artificial porous media by

Figure 6 Reflected Brownian trajectories of the nuclei confined inside the unit disk. On the left,

five trajectories are drawn in the short-time regime with p ¼ 0.01. A dotted inner circle shows the

diffusion layer of width
ffiffiffi
p

p ¼ 0:1. The motion of four nuclei outside the diffusion layer is not re-

stricted. They form the major contribution to the second moment (leading term in the order of p).
One nucleus inside the diffusion layer moves slower than the others that modifies its contribution

to the second moment (correction term in the order of p3/2). On the right, a single trajectory is

shown for the long-time regime with p ¼ 10. A nucleus explores the bulk of the unit disk several

times. Ten black dots show successive positions of the nucleus along its trajectory at times tk ¼
kT/10 (k ¼ 1,. . .,10). Since a nucleus moves fast, these positions look as independent ‘‘jumps’’ to

randomly chosen bulk points.
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measuring the macroscopic signal in the short-time

diffusion regime [see (75) and references therein].

This equation was repeatedly applied in various con-

texts. It is worth noting, however, that the form [49]

of the short-time behavior is only valid for statisti-

cally isotropic media. As discussed in (1), Eq. [48] is
not applicable even in the case of a parallelepiped,

for which the coefficient z3/2 should be recalculated

according to a more general Eq. [47]. Note that

higher-order terms in Eq. [46] can also be significant.

In the presence of surface relaxation, the analysis is

conceptually the same, but computation is more cum-

bersome (60).

Long-Time Diffusion Regime

In the opposite long-time diffusion regime, the

average displacement
ffiffiffiffiffiffiffi
DT

p
is much larger than the

size L of a confining medium. The confining medium

is assumed to be bounded (or ‘‘closed’’) so that none

of the spin-bearing particles can enter or escape. This

situation should not be confused with another com-

mon frame of ‘‘open’’ infinitely large systems, when

the whole exploration of a confining medium is never

attained [for results in this case, see (75) and referen-

ces therein; see also the related discussion in (1)].
In the long-time regime (p 	 1), each nucleus

explores the bulk of a bounded confining domain

several times. A nucleus moves so fast that its spatial

displacements look like independent ‘‘jumps’’ at ran-

domly chosen bulk points (Fig. 6). It means that dif-

ferent nuclei experience an inhomogeneous magnetic

field in a similar way, the phenomenon known as

motional narrowing or averaging [see (1) for details].
The distribution of the phase shifts is therefore

expected to be Gaussian and the signal to be given

by Eq. [39].

Since p is large, a perturbation theory cannot be

applied any more for an analytical computation of

the second moment in the long-time regime. In turn,

one can use the fact that the parameter p appears in

the argument of exponential matrices in Eq. [36].

When matrix products are written explicitly by sums,

many terms are exponentially small for p 	 1. The

only contribution in time integrals in Eq. [35]

appears when t2 � t1 is small. When there is no sur-

face relaxation (h ¼ 0), the general behavior is (1)

Eff2=2g ’ z�1

p

Z1
0

dt f 2ðtÞ þ Oðp�2Þ; [50]

where the time integral incorporates the temporal

profile f(t), and z�1 is a geometry-dependent coeffi-

cient

z�1 ¼
1

L2

X1
m¼1

B0;ml
�1
m Bm;0: [51]

The first calculation of z�1 for a slab geometry

goes back to Robertson who obtained z�1 ¼ 1/120

(66). Eight years later, Neuman performed a compu-

tation for a cylinder and a sphere that gave 7/96 and

8/175, respectively (76). Neuman also derived the

correction of the order of p�2 in the case of a rectan-

gular two-pulse temporal profile. As pointed out in

(1), the main contribution in Eq. [50] is universal,

while the form of the correction terms depends on a

particular choice of the temporal profile. An analyti-

cal computation for slab, cylinder, and sphere with a

relaxing boundary (h . 0) is given in (60).
Under the Gaussian phase approximation, the

macroscopic signal is determined by the second

moment, yielding

E ’ exp �z�1

g2g2L4T
D

Z1
0

dt f 2ðtÞ

2
4

3
5: [52]

One immediately observes apparent differences

between this attenuation and that of the short-time

diffusion regime through Eq. [44]:

1. The diffusion coefficient D appears in the de-

nominator: faster diffusion leads to a weaker

attenuation. It may look counter-intuitive

since faster diffusion yields a stronger mixing

of the spin-bearing particles. However, this

mixing helps to average out specific contribu-

tions of the local magnetization to the macro-

scopic signal.

2. The logarithm of the signal is proportional to

the observation time T, instead of varying as

T3 in the short-time regime (Eq. [45]).

3. The signal is dependent on, and very sensitive

to, the size L of a confining medium. In addi-

tion, a supplementary geometry-dependent

coefficient z�1 appears.

Further details on the long-time behavior can be

found in (1).

Apparent Diffusion Coefficient

The second moment of the phase shift can be used to

define an effective, time-dependent or, equivalently,

apparent diffusion coefficient (ADC):

DðpÞ ¼ D
Eff2=2g

phðt1 � t2Þi2
: [53]
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Woessner introduced the above ‘‘spin-echo diffu-

sion coefficient’’ as a measure of fluctuations of the

phase shift (77). This is the ratio between the second

moment Eff2=2g and its value for free (unrestricted)

diffusion according to Eq. [43]. ADC shows how ge-

ometrical restrictions ‘‘slow down’’ the diffusive dy-

namics of nuclei (75). In the short-time limit (p ?
0), one retrieves D(0) ¼ D as expected.

When the Gaussian phase approximation holds,

the signal is determined by the second moment so

that

DðpÞ ¼ � lnE

q2phðt1 � t2Þi2=D
: [54]

The denominator of this formula is often called

the b-factor, b-value or b-coefficient:

b ¼ q2p

D
hðt1 � t2Þi2 ¼ g2g2T3hðt1 � t2Þi2: [55]

This notation leads to a particularly simple form

of the signal

E ¼ exp½�bDðpÞ�

that allows one to measure D(p) experimentally as

the slope of the dependence of log E versus b-value.
As discussed in ‘‘How Apparent is Diffusion Coeffi-

cient’’ section, more attention should be paid to the

definition and computation of ADC. For instance, the

above equation can be used, rigorously speaking,

only in the limit of zero b.
If there is no surface relaxation (h ¼ 0), Eq. [37]

yields

DðpÞ ¼ D
X
m

L2lmB2
0;m|fflfflfflfflffl{zfflfflfflfflffl}

weights

wf
z}|{profile fðtÞ

ðp lm|{z}
time scaling

Þ; [56]

where the function wf(p) depends only on the choice

of the temporal profile f(t):

wf ðpÞ ¼
he�pðt2�t1Þi2
hpðt1 � t2Þi2

: [57]

The spectral representation [56] states that ADC is

simply a superposition of terms which are obtained

by rescaling the unique function wf(p).
The function wf(p) approaches 1 for small p (its

asymptotic behavior can be derived from Eq. [49]),

and it behaves as p�2 for large p according to Eq.

[50]. For instance, if f(t) is a rectangular two-pulse

profile of duration d ¼ 1/2 [Fig. (4a)], one finds h(t1
� t2)i2 ¼ 1/12 and

wf ðpÞ ¼ 12
1

p2
� e�p � 4e�p=2 þ 3

p3

� �
:

For a linear gradient, Eq. [42] yieldsX
m

L2lmB2
0;m ¼ z1 ¼ 1:

so that each term L2lmB2
0;m in Eq. [56] can be

thought of as a relative weight of the eigenfunction

um contributing to ADC. In turn, the eigenvalue lm
determines a characteristic time scale at which the

contribution appears in Eq. [56] through the function

wf(p). Eq. [56] allows one to distinguish the roles of

various ‘‘ingredients’’ of the problem. So, the spatial

profile of the magnetic field enters only into the

weights lmB2
0;m, while the temporal profile is fully

taken into account by the function wf(p). Finally, the
geometry determines both the time scales ðDlmÞ�1

and the weights lmB2
0;m. Equation [56] relates spec-

tral properties of the Laplace operator to measurable

characteristics of a diffusion-confining domain. The

spectral analysis provides not only a clear and useful

interpretation of ADC but also forms a mathematical

ground for a more profound analysis. As an example,

it is demonstrated in the Appendix that ADC is a

decreasing function of time (if there is no surface

relaxation). To our knowledge, this is the first rigorous

proof of this fact.

Localization Regime

In many cases of practical interest, the knowledge of

the second moment is enough for an accurate approx-

imation of the macroscopic signal. However, when

the gradient intensity increases, the fourth and

higher-order moments become progressively more

and more significant. Starting from some gradient in-

tensity, a perturbative approach fails since one needs

to calculate too many terms. This problem can be

illustrated by the following example. The exponential

function e�x can always be expanded into an abso-

lutely convergent power series

e�x ¼
X1
n¼0

ð�xÞn

n!
:

This series can in principle be used to calculate

the value of the exponential function for any x. How-
ever, the computation with an accuracy better than

286 GREBENKOV

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



1% requires at least 8 terms for x ¼ 2 and 14 terms

for x ¼ 3. The number of terms grows rapidly with x.
Moreover, the resulting value of the exponential

function becomes smaller with increasing x, while it

is calculated by summing up large numbers with op-

posite signs. The computational error increases dra-

matically. For instance, such a perturbative computa-

tion becomes useless for x ¼ 10. The same problem

appears for the macroscopic signal, with the ‘‘only’’

complication that the perturbative terms are now the

high-order moments Effn=n!g which are difficult to

calculate (69).
This problem was studied theoretically by Stoller

and co-workers for a slab geometry (78). They

derived an asymptotic behavior of the macroscopic

signal at high gradient intensity:

E / ðp=qÞ1=3 exp � a1
2
ðpq2Þ1=3

h i
; [58]

where a1 ’ 1:0188 is the absolute value of the first

zero of the derivative of the Airy function [the cor-

rection factor (p/q)1/3 was later introduced by Hürli-

mann et al. (79)]. The stretched exponential behavior

[58] can be attributed neither to the short-time re-

gime nor to the long-time regime. Neither Gaussian

phase approximation nor apparent diffusion coeffi-

cient have meaning in this so-called localization

regime.

With the definitions of p and q, the macroscopic

signal in Eq. [58] reads as follows

E / LgS

V
exp � a1

2
ðT=TgÞ

h i
;

where Tg ¼ (Dg2g2)�1/3 and Lg ¼ (gg/D)�1/3 are typi-

cal time and length which are needed for a diffusing

nucleus to acquire a sufficient phase shift for a con-

siderable signal decay. In contrast to Eq. [45], the

signal decay is much slower in the localization re-

gime than for free diffusion. A strong gradient

destroys the signal from the unrestricted nuclei in the

bulk and makes a boundary layer of width Lg to work

effectively as a relaxing surface with a characteristic

‘‘lifetime’’ Tg. The prefactor Lg S/V accounts for the

fraction of nuclei in the boundary layer.

The dependence [58] and its significance for

NMR applications were discussed in (74). In particu-

lar, the coefficient a1/2 was argued to be independent

of a confining geometry. An elegant spin-echo

experiment by Hürlimann et al. confirmed a break-

down of the GPA and the relevance of the localiza-

tion regime (79). They studied restricted diffusion of

water molecules (with D ’ 2:3� 10�9m2s�1)

between two parallel plates at distance L ¼ 0.16 mm.

The signal attenuation was measured as a function of

the gradient intensity g. Even for gradient pulses of a

long duration T ¼ 120 ms, the dimensionless diffu-

sion coefficient p was small, p ¼ 0.01, so that one

could expect to observe the short-time regime with a

Gaussian g2 dependence, Eq. [44]. A spectacular

deviation from this behavior was experimentally

observed at gradient intensities above 15 mT m�1.

It is crucial to stress that 15 mT m�1 is an ordi-

nary gradient intensity which can be easily created in

clinical and research MR scanners. Thousand times

higher gradients can be generated in modern scanners

for material analysis. The localization regime is not a

pathological situation at extreme conditions, but it is

as ordinary as the classical Gaussian regime. The rar-

ity of theoretical studies and experimental observa-

tions of the localization regime is astonishing. It

seems that the convenience of using Gaussian phase

approximation and a puzzling belief in its applicabil-

ity prevented scientists to go beyond this classical

frame. The interest in non-Gaussian behaviors started

recently to grow (80, 81).
The validity of the Gaussian phase approximation

is a long-standing problem [see (1) and references

therein]. A thorough discussion of this problem

would need a separate publication. In this article,

only limitations of the GPA by a simple numerical

example are illustrated. As in Hürlimann et al’s.

experiment (79), restricted diffusion between parallel

plates is considered, and the macroscopic signal is

computed by using the matrix formalism described in

Part 1. For the sake of simplicity, surface relaxation

is neglected (h ¼ 0). The macroscopic signal E as a

function of two dimensionless parameters, q2 and p,
is shown in Fig. 7. When the Gaussian phase approx-

imation holds, the signal, plotted on a logarithmic

scale, linearly decreases with q2 for a fixed p. This
behavior is clearly seen for p ¼ 0.01 (short-time

regime; curve is shown by circles) and p ¼ 10 (long-

time regime; curve is shown by squares). However,

there is a significant deviation from the Gaussian

behavior for intermediate values of p. To make the

difference clearer, the signal predicted by the GPA is

plotted in the same figure. The localization regime is

not presented on this plot (e.g., a deviation from the

Gaussian behavior in Hürlimann’s experiment is

started from g 
 15 mT m�1 that corresponds to q2


 6000 for the numerical example used). In sum-

mary, our example shows the importance of checking

the validity of the Gaussian phase approximation in

experments, as well as the interest in theoretical and

numerical investigation of restricted diffusion beyond

this classical regime.

LAPLACIAN EIGENFUNCTIONS IN NMR 287

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



IV. DISCUSSION

Given a pedagogical character of this article, the Dis-

cussion section is organized in the form of answers

to some questions that a reader might want to ask af-

ter reading previous sections.

Are Simple Shapes of Any Interest?

The power of a spectral description relies on its

applicability to any bounded domain. For instance,

the structure of the short-time and long-time asymp-

totic formulas is the same for all the domains, the dif-

ference between their shapes appearing in the values

of a limited number of constants (including z3/2 and

z�1). At the same time, the computation of these con-

stants and of the macroscopic signal requires finding

Laplacian eigenfunctions, at least a part of them. As

discussed in Part 1, this is a difficult numerical task.

Using a matrix formalism, we ‘‘push’’ all computa-

tional problems toward a construction of the matrices

L and B. Once these matrices are constructed,

numerically or analytically, the remaining computa-

tion is easy, rapid, and very accurate. In this light,

simple diffusion-confining domains for which the

eigenfunctions are already known, are particularly

useful to ‘‘probe’’ a matrix formalism. In Part 1,

explicit formulas for the matrices L and B were

given for the unit interval, disk, and sphere with a

purely reflecting boundary (h ¼ 0). A general case of

partially reflecting boundaries was treated in (1), in
which the values for various geometry-dependent

constants were also listed. Since the matrices L
and B are known explicitly for these simple shapes,

a spectral-oriented computation is particularly

efficient.

A practical importance for considering simple

shapes is a possibility to use them for testing numeri-

cal tools. For instance, what is the appropriate size

for truncation of the infinite-dimensional matrices L
and B? How does the accuracy vary with the trunca-

tion size? How many eigenfunctions is needed? It is

much easier to answer these questions for simple

shapes, for which there is almost no limitation in the

number of eigenfunctions that can be calculated.

The results for simple shapes are often presented

as ‘‘illustrations’’ for all bounded domains. These

illustrations may, however, lead to a dangerous over-

simplification of the problem. Although many con-

cepts of restricted diffusion are valid both for simple

and complicated shapes, a ‘‘blind’’ illustration may

be misleading. Two examples are given.

1. As shown in (1), the elements of the matrix B
for three simple shapes (interval, disk, sphere)

are fully expressed in terms of the eigenvalues

lm. The eigenfunctions um ‘‘disappear’’ from

the scene as though they are irrelevant to the

problem. This is a very particular feature of

these three shapes and of a linear magnetic

field gradient. When one modifies the mag-

netic field or considers other domains, the

eigenfunctions are essential.

2. The considered simple shapes have one geo-

metric length scale, i.e., their size L. For

instance, one could clearly distinguish the

short-time and long-time regimes by compar-

ing L with the diffusion length
ffiffiffiffiffiffiffi
DT

p
. In con-

trast, many porous structures (lungs, cement,

Figure 7 Macroscopic signal from the nuclei diffusing

between two parallel plates [a linear magnetic field gradi-

ent is applied perpendicularly to these plates; the effective

temporal profile used here is shown in Fig. (4a)]. On the

top, the signal is plotted as a function of two parameters:

square of the dimensionless gradient intensity, q2 ¼ (g
gTL)2, and the dimensionless diffusion coefficient, p ¼
DT/L2 (here, there is no surface relaxation, h ¼ KL/D ¼
0). On the bottom, the signal obtained by the Gaussian

phase approximation [39] is plotted. The two curves

shown by squares and circles represent the short-time and

long-time regimes, for which the second moment is given

by Eqs. [49] and [50], respectively. [Color figure can be

viewed in the online issue, which is available at www.

interscience.wiley.com.]
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sedimentary rock, etc.) exhibit multiple length

scales. If ‘ and L are the smallest and the

largest length scales of a domain, there may

emerge new features in the intermediate

region ‘ �
ffiffiffiffiffiffiffi
DT

p
� L. For instance, the emer-

gence of a ‘‘tortuosity’’ regime for thin circu-

lar and spherical layers is shown, which ex-

hibit two length scales, is shown in (61).

The consequences of the multiscale character of

porous media on restricted diffusion are still poorly

understood. For instance, the role of connectivity is

unclear (82). The roughness of a boundary is

expected to be important for certain time scales (83,
84). All these questions require a substantial study of

restricted diffusion in complex geometries.

What Is an Analytical Solution?

With currently available computational facilities, a

question of distinction between the scopes of theoret-

ical and numerical analysis arises stronger than ever.

What is ‘‘an analytical solution’’ of a problem, and

what is it used for? At first thought, this question

may appear strange or ridiculous. From a classical

point of view, an analytical solution is expressed in

terms of ‘‘elementary’’ functions (e.g., powers, expo-

nential or sine functions) or, more generally, of

‘‘special’’ functions (e.g., Bessel functions). How-

ever, even an exponential function needs a numerical

computation to be evaluated. Even if a simple analyt-

ical solution were available, we still need a computer

for getting numbers that can be compared with exper-

imental values. Is it really different from a numerical

solution of a problem? To make our concerns clearer,

two examples are considered.

1. Two formulas can be compared for the mac-

roscopic signal attenuation in a linear mag-

netic field gradient: Eq. [44] which is exact

for unrestricted diffusion in the whole space,

and Eq. [27] for restricted diffusion for a slab.

The first formula is a typical example of an

analytical solution, which eventually is very

simple. The second formula, involving infi-

nite-dimensional matrices (with explicitly

known elements), is not classified as an ana-

lytical solution in the classical sense. How-

ever, the conceptual difference between these

formulas is superficial. In fact, both formulas

are exact and explicit, they involve the expo-

nential function and clearly reveal the depend-

ence on physical parameters. Both formulas

require a computer to get the signal for a

given set of physical parameters. Finally, in

both cases, the computation is easy, rapid, and

very accurate (if matrices are not too big). Our

favor for the first formula relies on a prefer-

ence to deal with the exponential function of a

number rather than that of a matrix.

2. The second example was suggested by Barzy-

kin who showed that the macroscopic signal

attenuation due to diffusion in a linear gradi-

ent in a slab can be expressed as an integral

of a hypergeometric function (85). This is an

example of an analytical solution in the clas-

sical sense. Although analytical, this expres-

sion is of very limited use, for both numerical

and theoretical purposes. In contrast, the ma-

trix representation [27] of the same signal is

instructive for theoretical considerations and

efficient for numerical computation, though

this form is not classified as an analytical

solution.

A classical view on an analytical solution as a

tabulated function should be revised. The new crite-

ria for a solution to be considered as analytical may

be the following: rapidity, ease and robustness of

computation, clarity of its physical interpretation,

usefulness for practical applications. A matrix for-

malism satisfies all these criteria.

Does One Need a Theoretical Analysis?

In Part 1, an efficient numerical tool for calculating

the macroscopic signal is described. Having this tool

in hand, one may wonder what is the interest in fur-

ther theoretical advances? In other words, if the sig-

nal can be found very accurately in a numerical way,

should one really care about sophisticated asymptotic

techniques, Laplace transforms, and multiple inte-

grals which would allow one to get approximate sol-

utions with a limited range of applicability? In our

opinion, this question should bother any theoretician

because in some cases the derived asymptotic results

are not worth the efforts to get them. Let us however

describe at least three situations in which theoretical

results remain invaluable.

1. A numerical computation may become inac-

curate in some limiting cases. For instance, a

numerical computation of a diffusive propaga-

tor in the short-time limit requires a large

number of eigenfunctions. Even in the sim-

plest case of the unit interval, for which

everything is known explicitly, and the eigen-

functions are particularly simple (sine and
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cosine functions), a direct summation in

Eq. [20] fails for times smaller than 0.01

because of round-off errors. In fact, the

asymptotic formula [21] indicates that

Gtð0; 1Þ ’ e�1=ð4tÞ=
ffiffiffiffiffiffiffi
4pt

p
’ 4� 10�11 for t ¼

0.01 (we put dimensionless units here, with D
¼ 1). The difficulty is now evident: in Eq.

[20], we are summing up terms of the order

of 1 in attempt to compute a very small sum

(we evoked a similar problem in the section

‘‘Localization Regime’’). While a numerical

computation becomes worse as t is getting

smaller, the asymptotic formula [21] becomes

more and more accurate. The numerical and

theoretical analysis are complementary in this

situation.

2. Theoretical analysis allows one to ensure and

sometimes to control the convergence of nu-

merical results. For instance, the theory states

that the macroscopic signal exhibits a multi-

exponential attenuation [31] due to surface

relaxation. It is therefore possible to estimate

the required number of terms and the trunca-

tion error. Another example is a computation

of the second moment in the short-time re-

gime. The asymptotic formula [46] allows one

to keep several first terms and to omit the

others, for which one can estimate an error.

3. A numerical computation works as a ‘‘black

box’’ which produces results without giving

‘‘explanations.’’ In fact, physical parameters

appear explicitly in the matrix form, but the

resulting macroscopic signal depends on them

in a very complicated way because of a ma-

trix exponential. Theoretical analysis allows

one to shed a light onto this dependence and

to explain why this or that behavior is

observed. For instance, a matrix formalism

correctly reproduces an exponential decay

[52] of the macroscopic signal in the long-

time regime, but it neither explains it nor

allows one to relate the constant z�1 to the

spectral properties and the geometry of a dif-

fusion-confining domain. This is the purpose

of theoretical analysis.

What Can One Do in Porous Media?

Although simple shapes are useful for theoretical

analysis, main ‘‘targets’’ of DWI have much more

complicated geometrical structures. The geometry of

biological tissues, human organs, mineral samples,

and materials is complex in many ways, in particular:

1. These structures exhibit multiple length scales

(86, 87). For instance, the architecture of sedi-

mentary rocks can be represented by intercon-

nected rough channels with a spread pore size

distribution (64, 65). A broad range of length

scales makes questionable the use of a single

dimensionless diffusion coefficient p.
2. The boundary of these media is often irregular

that may considerably influence the signal

attenuation, either by diffusional screening

[inhomogeneous accessibility for diffusing

particles, see (15–22, 88)] or by enhancing

susceptibility-induced magnetic field gradients

[see (89) and references therein].

It is then natural to ask whether a spectral

approach can be used for describing restricted diffu-

sion in porous media. As we mentioned earlier, the

spectral approach is formally applicable to any

bounded domain, whatever its complexity is. Most

theoretical results remain valid in general [e.g., the

short-time asymptotic behavior of the macroscopic

signal which assesses the surface-to-volume ratio of

a diffusion-confining medium (71–73, 75)]. The cen-

tral problem for using a spectral approach in practice

is a numerical computation of the governing matrices

L and B that is a real challenge in the case of com-

plex geometries. For this purpose, some model struc-

tures of porous media (like hierarchical morpholo-

gies, self-similar fractals, ordered or random packs of

spherical beads, etc.) are of great interest. Some kind

of statistical averaging may possibly be required for

reducing information about irrelevant geometrical

details. A better understanding of spectral character-

istics of the Laplace operator in complex domains

and of its consequences for restricted diffusion in po-

rous media is an exciting area for future research.

Is a Porous Medium Bounded or Open?

A broad range of length scales suggests to consider

porous media as infinite unbounded systems. This

consideration relies on a very simple principle: if the

majority of diffusing nuclei cannot reach the frontier

of a sample during an experiment, it does not matter

whether this frontier exists or not. The motion of

nuclei is then modeled as unrestricted diffusion with

an apparent diffusion coefficient which accounts for

the presence of geometrical obstacles, paramagnetic

impurities, sinks, traps, etc. This approach is helpful

in many practical situations, especially when a nu-

merical computation of Laplacian eigenfunctions for

the whole system is too challenging. In some cases it

is convenient to describe a macroscopically homoge-
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neous medium as periodic (67, 68, 90–93). In partic-

ular, diffusion eigenstates can be introduced and used

to investigate the macroscopic signal (93).
In this article, it is not going to be argued whether

a porous medium is worth to be considered as

bounded or unbounded. Either approach has its own

advantages and drawbacks, and the choice between

them strongly depends on the problem in hand. At

present, applications of spectral tools were mainly re-

stricted to simple shapes, but this situation may

change in future.

How Apparent Is Diffusion Coefficient?

As discussed in ‘‘Apparent Diffusion Coefficient’’

section, an apparent diffusion coefficient is meas-

ured as a slope of log E versus b-value in the limit

of zero b. ADC contains potentially useful informa-

tion about translational dynamics of nuclei and

about the geometry of a diffusion-confining do-

main. The relative simplicity and noninvasive char-

acter of diffusion-weighted NMR measurements

made ADC a broadly used characteristics of porous

media, from lung and brain imaging in medicine

(41, 42) to sedimentary rock analysis in oil recov-

ery industry (86, 94).
It seems that a routine use of ADC erased the

frontiers of its application. It is important to recall

some ‘‘traps’’ to which a blind use of ADC may lead.

1. A magnetic field is applied to measure the sig-

nal so that D(p) incorporates its effect. In par-

ticular, the short-time and long-time asymptotic

formulas [49, 50] for the second moment (and

thus for ADC) explicitly depend on the tempo-

ral and spatial profiles of the magnetic field.

ADC is therefore not an intrinsic characteristic

of a medium: two distinct measurements of

ADC on the same sample may lead to different

results. As a consequence, the information

extracted from a spin-echo ADC cannot be con-

sidered independently of measurement condi-

tions. The reported ADC values should be

accompanied by an accurate specification of an

experimental setup (gradient intensity and

waveform, timing, etc.). The simplicity of using

a single b-value for a combination of physical

parameters is tempting, but it is a dangerous

oversimplification.

2. D(p) is not in general equivalent to the classi-

cal time-dependent diffusion coefficient that

characterizes the mean square displacement in

time: DmsdðtÞ ¼ Ef½rðtÞ � rð0Þ�2g=6t. The dis-

tinction becomes particularly pronounced in

the long-time regime. In a bounded domain,

the mean square displacement approaches a

constant so that Dmsd(t) ! 1/t. In turn, in sec-

tion ‘‘Apparent Diffusion Coefficient’’ it is

seen that D(p) ! 1/p2 ! 1/t2.
3. ADC is supposed to be a function of a dimen-

sionless time p(¼DT/L2), while the right-hand

side of Eq. [54] is a priori function of p and

q. The notion of ADC is therefore only mean-

ingful when the Gaussian phase approxima-

tion holds. As discussed in ‘‘Localization

Regime’’ section, the GPA may break down

at ordinary experimental conditions. In this

situation (e.g., for the localization regime),

ADC has no meaning. In practice, it is impor-

tant to measure the macroscopic signal at sev-

eral gradient intensities g and then to check

that ADC is indeed independent of g.

What Does Diffusion Tell Us about
Geometry?

In this article, a forward problem which consists in

predicting transport properties of a system with a

given (or known) geometry is considered. The central

question here is: ‘‘How does the macroscopic signal

depend on physical parameters (gradient strength, ob-

servation time, etc.) for a given diffusion-confining

domain?’’. This question is of fundamental interest.

In practice, however, one is often interested in solv-

ing an inverse problem which consists in determining

an unknown geometry by monitoring restricted diffu-

sion. So, DWI aims at extracting information about

the geometry of a diffusion-confining medium from

measurements of the macroscopic signal as a func-

tion of physical parameters. Moreover, geometrical

information should be revealed at length scales

which are smaller than the available spatial resolu-

tion (size of voxels) that can be achieved by gradient

encoding. For instance, the spatial resolution of gas

DWI of human lungs is of the order of a millimeter,

while one needs to extract information about the aci-

nar structure at submillimetric scales (40–42). In

other words, we want to say something about the ge-

ometry of a diffusion-confining domain inside a sin-

gle spatial voxel. All the information that we have in

our hands is the macroscopic signal, and how the sig-

nal depends on physical parameters. This inverse

problem is a great challenge. After realizing the com-

plexity of the problem, one may wonder whether it is

solvable at all. A full recovery of an unknown geom-

etry seems to be unrealistic, both from mathematical

and physical points of view.
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From a mathematical point of view, the macro-

scopic signal is fully determined by the governing

matrices L and B which, in turn, are formed by the

Laplacian eigenfunctions and the spatial profile B(r)
of the magnetic field. Does the structure of the matri-

ces L and B determine the shape? This question goes

back to the famous Kac’s question ‘‘Can one hear the

shape of a drum?’’ (95). In fact, the acoustic frequen-

ces that we hear from a drum are given by the eigen-

values of the Laplace operator which depend on the

shape of a drum. If we know all the eigenvalues (i.e.,

the matrix L), do we know the geometry? The nega-

tive answer to this question was given by Gordon

et al. who constructed isospectral domains of different

shapes (96). It means that the matrix L alone cannot

determine the shape. In NMR, we have a freedom to

choose the encoding magnetic field B(r) that provides
us with another matrix B. One may therefore ask

whether it is possible to define such a function B(r) so
that the knowledge of the related matrix B would

determine the shape of a diffusion-confining domain.

If a full recovery is still impossible, what would be

the ‘‘best’’ choice for the function B(r) to extract as

much information as we can? To our knowledge,

these challenging mathematical questions are open.

From a physical point of view, even if a full re-

covery of the shape was possible in principle, an

unavoidable presence of noise would certainly limit

its practical implementation. For instance, if we mea-

sure the signal attenuation due to surface relaxation,

we can in principle determine the spectral information

from Eq. [31]. However, this equation contains an in-

finity of terms whose contributions exponentially

decay as m increases. The presence of unavoidable

noise limits our abilities to recover the spectral infor-

mation to several most significant terms in this sum.

If we focus on a partial recovery of the shape,

many useful results can be achieved. For instance,

the surface-to-volume ratio of a porous medium can

be determined in the short-time limit (‘‘Short-Time

Diffusion Regime: Corrections’’ section). In some

cases, one can extract pore size distribution (‘‘Zeroth

Moment’’ section). Recent progress with correlation

experiments (e.g., combined measurement of T1–T2
relaxation times) opens new ways for characterizing

restricted diffusion (97–100). Further discussion goes

beyond the scope of this article.

V. CONCLUSIONS

Surprisingly, the role of Laplacian eigenfunctions in

NMR is often underestimated. On one hand, it is so

natural to think of diffusion problems in terms of

Laplacian eigenfunctions that it is difficult to trace

back who suggested it first. On the other hand, a nu-

merical computation of eigenfunctions was a chal-

lenging problem for a long time. With limited com-

putational facilities, one naturally preferred to search

for a single solution of the Bloch-Torrey equation for

specific initial and boundary conditions instead of

looking for numerous eigenfunctions. The lack of ef-

ficient ‘‘eigensolver’’ led to a broadly accepted point

of view that spectral tools are worth only for simple

shapes, for which the eigenfunctions are known ex-

plicitly. This point of view has to be reconsidered

nowadays.

First, Laplacian eigenfunctions form a mathemati-

cal ground for a thorough theoretical analysis of re-

stricted diffusion which can be applied to any

bounded domain, simple or complex. The two gov-

erning matrices L and B completely determine re-

stricted diffusion and the consequent macroscopic

signal. The spectral approach is a general and well-

adapted mathematical language to speak about re-

stricted diffusion, at both theoretical and numerical

levels. In particular, the short-time and long-time as-

ymptotic results are universal. Many results about re-

stricted diffusion can be proved by using spectral

decompositions.

Second, computational facilities are progressively

increasing. Of course, the geometry of many biologi-

cal and mineral systems is still too complicated for a

numerical computation of eigenfunctions. However,

here we are not speaking about solving diffusion

problems for such systems on supercomputers is not

being spoken of. What is more important is to under-

stand the mechanism how a complex geometry influ-

ences the macroscopic signal. For this purpose, one

can start with model shapes like self-similar fractals

or packs of spherical beads, for which finding Lapla-

cian eigenfunctions is more tractable. Since diffusing

particles have no memory, diffusion is not very sensi-

tive to specific geometrical details. Once the role of a

geometrical complexity is understood for model

shapes, similar mechanisms are expected to work for

realistic shapes. This will be a new step in under-

standing restricted diffusion and its role in NMR.
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APPENDIX

Time-Dependent Diffusion Coefficient

Here, the use of a spectral analysis is illustrated

by showing that the time-dependent diffusion

coefficient D(p) is a decreasing function of time

(if there is no surface relaxation). To our knowl-

edge, this is the first rigorous proof of this result.

Although the presented demonstration may look

too technical for a pedadogical article, it illus-

trates well the potential applications of spectral

tools.

The demonstration relies on the spectral repre-

sentation [56] for D(p). First of all, it is reminded

that this representation was deduced from Eq. [40]

by assuming that the rephasing condition [25] holds.

In this case, the temporal average h(t1 � t2)i2 is

given by Eq. [41] and it is strictly positive. This

condition is important: e.g., if f(t) was equal to 1,

one would get h(t1 � t2)i2 ¼�1/6.

If wf(p) is shown to be a decreasing function,

then D(p) should decrease as being a sum of

decreasing functions with positive coefficients

lmB2
0;m. The derivative of wf(p) is as follows:

w0
f ðpÞ ¼ � he�pðt2�t1Þ½pðt2 � t1Þ þ 1�i2

p2hðt1 � t2Þi2

The denominator of this ratio is positive due to

the rephasing condition. Our aim is to show that the

numerator is also positive for any temporal profile

f(t), that is as follows:

Z1
0

dt1

Z1
0

dt2f ðt1Þf ðt2ÞKðt1; t2Þ 
 0;

Kðt1; t2Þ ¼ e�pjt2�t1jðpjt2 � t1j þ 1Þ:

[A1]

In other words, it has to be shown that an integral

operator defined by the kernel K(t1, t2) is positively

definite for any p . 0 (for p ¼ 0, one gets w0
f (0) ¼

0). This integral operator is defined on the space L2

([0,1]) of measurable and square integrable functions

on the unit interval. Let us consider another integral

operator defined by the same kernel but on a larger

space L2ðRÞ. The Fourier transform of the kernel of

this operator is calculated as follows:Z
R

dt eiote�pjtj pjtj þ 1ð Þ ¼ 4p3

ðp2 þ o2Þ2
> 0:

The last inequality implies that this operator is

positively definite: for any f 2 L2ðRÞ,
Z
R

dt1

Z
R

dt2f ðt1Þf ðt2ÞKðt1; t2Þ 
 0: [A2]

As L2ð½0; 1�Þ 
 L2ðRÞ, the original integral opera-

tor is also positive definite that proves inequality

[A1] and wf
0(p) , 0. This completes the proof that

wf(p) is a decreasing function.
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